Patents by Inventor Robert Basil Fedich

Robert Basil Fedich has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9458367
    Abstract: A liquid aminoether acid gas absorbent which is subject to freezing in a cold climatic zone though which the aminoether is to be shipped is rendered freeze-resistant by mixing the aminoether with water prior to transport through the cold climatic zone; the aminoether/water mixture typically contains 10 to 40 weight percent water, based on the weight of the aminoether. The aminoether/water mixture can also be stored in the cold climatic zone without being externally maintained at a temperature above the inherent freezing point of the aminoether.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: October 4, 2016
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Michael Siskin, Robert Basil Fedich, Michel Daage
  • Patent number: 9376756
    Abstract: Aminoethers are used as corrosion inhibitors in boiler systems in which a working fluid comprising water with an aminoether corrosion inhibitor is circulated from a heater to a utilization site at which the working fluid gives up energy and decreases in temperature. A preferred class of aminoethers are the alkoxytriethyleneglycol-tert-alkylamines such as methoxy triethyleneglycol-tert-butylamine.
    Type: Grant
    Filed: May 23, 2014
    Date of Patent: June 28, 2016
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Michael Siskin, Robert Basil Fedich, Michel A. Daage
  • Publication number: 20140255250
    Abstract: Aminoethers are used as corrosion inhibitors in boiler systems in which a working fluid comprising water with an aminoether corrosion inhibitor is circulated from a heater to a utilization site at which the working fluid gives up energy and decreases in temperature.
    Type: Application
    Filed: May 23, 2014
    Publication date: September 11, 2014
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Michael Siskin, Robert Basil Fedich, Michel A. Daage
  • Publication number: 20130243676
    Abstract: A process for absorbing H2S and CO2 from a gas mixture containing both these gases comprises contacting the gas mixture with an absorbent combination of (i) primary absorbent component comprising a severely sterically hindered tertiary etheramine triethylene glycol alcohol or derivative of such an alcohol and (ii) secondary absorbent component for acidic gases comprising a liquid amine such as methyldiethylamine (MDEA), monoethanolamine (MEA), 2-amino-2-methyl-1-propanol (AMP), piperazine (PZ), diethanolamine (DEA), triethanolamine (TEA), diglycolamine (aminoethoxyethanol, DGA) and diisopropylamine (DIPA) another etheramine alcohol or diamine. By using the combination of amine absorbents, the overall selectivity of CO2 pickup can be maintained while retaining good H2S sorption selectivity; the selectivity of the combination for H2S and CO2 may be controlled over a range of gas loadings in the absorbent.
    Type: Application
    Filed: March 11, 2013
    Publication date: September 19, 2013
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Michael SISKIN, Robert Basil FEDICH, Michel DAAGE
  • Publication number: 20130243677
    Abstract: A process for the selective separation of hydrogen sulfide from gas mixtures containing carbon dioxide as well as other acidic gases uses severely sterically hindered amino alcohol absorbents based on amino alcohols and ethers containing secondary nitrogen atoms hindered by an alpha tertiary carbon atom. Preferred absorbents include 2-(N-methylamino)-2-methylpropan-1-ol, (2-(N-ethylamino))-2-methylpropan-1-ol, (2-(N-isopropylamino)-2-methylpropan-1-ol, SBAE (2-(N-sec-butylamino)-2-methylpropan-1-ol) and (2-(N-t-butylamino)-2-methylpropan-1-ol.
    Type: Application
    Filed: March 11, 2013
    Publication date: September 19, 2013
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Michael SISKIN, Robert Basil FEDICH, Pavel Kortunov, Hans THOMANN
  • Publication number: 20130240047
    Abstract: A liquid aminoether acid gas absorbent which is subject to freezing in a cold climatic zone though which the aminoether is to be shipped is rendered freeze-resistant by mixing the aminoether with water prior to transport through the cold climatic zone; the aminoether/water mixture typically contains 10 to 40 weight percent water, based on the weight of the aminoether. The aminoether/water mixture can also be stored in the cold climatic zone without being externally maintained at a temperature above the inherent freezing point of the aminoether.
    Type: Application
    Filed: March 11, 2013
    Publication date: September 19, 2013
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Michael SISKIN, Robert Basil FEDICH, Michel DAAGE
  • Patent number: 8486183
    Abstract: An acid gas absorbent comprising an alkylamino alkyloxy (alcohol) monoalkyl ether and a process for the selective removal Of H2S from gaseous mixtures containing H2S and CO2 using an absorbent solution comprising an alkylamino alkyloxy alcohol monoalkyl ether.
    Type: Grant
    Filed: July 21, 2006
    Date of Patent: July 16, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Michael Siskin, Edmund John Mozeleski, Robert Basil Fedich, Frank Cheng-Yu Wang
  • Publication number: 20100037775
    Abstract: An acid gas absorbent comprising an alkylamino alkyloxy (alcohol) monoalkyl ether and a process for the selective removal Of H2S from gaseous mixtures containing H2S and CO2 using an absorbent solution comprising an alkylamino alkyloxy alcohol monoalkyl ether.
    Type: Application
    Filed: July 21, 2006
    Publication date: February 18, 2010
    Applicant: EXXON-MOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Michael Siskin, Edmund Mozeleski, Robert Basil Fedich, Frank Cheng-Yu Wang