Patents by Inventor Robert Brian Dopp

Robert Brian Dopp has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10407322
    Abstract: Various methods and systems are provided for electrochemical digestion of organic molecules. In one example, among others, a method includes providing an electrolyte fluid including organic molecules between the electrodes of a reaction vessel and applying a voltage wave shape to the electrodes of the reaction vessel to digest the organic molecules. No separator exists between the electrodes of the reaction vessel. In another example, a system for digesting organic molecules includes a reaction vessel, an electrolyte fluid including the organic molecules, and a power source. The reaction vessel includes a plurality of electrodes where no separator exists between the electrodes. The electrolyte fluid is provided between the plurality of electrodes of the reaction vessel and the power source can applies a voltage wave shape to the electrodes of the reaction vessel to digest the organic molecules.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: September 10, 2019
    Inventor: Robert Brian Dopp
  • Publication number: 20190136393
    Abstract: Various examples are provided for electrochemical digestion of organic molecules. In one example, among others, a method includes providing a fluid mixture including organic molecules to a reaction vessel including at least one current distribution part suspended within the fluid mixture. At least a portion of the current distribution part is coated with nano catalytic powders. Current flow can be controlled through the fluid mixture to heat the fluid mixture and simultaneously cause electrolysis of the fluid mixture. In another example, a device includes a pipe section surrounding a fluid mixture including organic molecules, a current distribution part positioned within the pipe section and suspended in the fluid mixture, and an electrical coupling assembly configured to provide an electrical potential to the current distribution part for heating and electrolysis of the fluid mixture. At least a portion of the current distribution part is coated with nano catalytic powders.
    Type: Application
    Filed: January 3, 2019
    Publication date: May 9, 2019
    Inventor: Robert Brian Dopp
  • Publication number: 20160168729
    Abstract: Various examples are provided for electrochemical digestion of organic molecules. In one example, among others, a method includes providing a fluid mixture including organic molecules to a reaction vessel including at least one current distribution part suspended within the fluid mixture. At least a portion of the current distribution part is coated with nano catalytic powders. Current flow can be controlled through the fluid mixture to heat the fluid mixture and simultaneously cause electrolysis of the fluid mixture. In another example, a device includes a pipe section surrounding a fluid mixture including organic molecules, a current distribution part positioned within the pipe section and suspended in the fluid mixture, and an electrical coupling assembly configured to provide an electrical potential to the current distribution part for heating and electrolysis of the fluid mixture. At least a portion of the current distribution part is coated with nano catalytic powders.
    Type: Application
    Filed: July 29, 2014
    Publication date: June 16, 2016
    Inventor: Robert Brian Dopp
  • Publication number: 20130087466
    Abstract: Various methods and systems are provided for electrochemical digestion of organic molecules. In one example, among others, a method includes providing an electrolyte fluid including organic molecules between the electrodes of a reaction vessel and applying a voltage wave shape to the electrodes of the reaction vessel to digest the organic molecules. No separator exists between the electrodes of the reaction vessel. In another example, a system for digesting organic molecules includes a reaction vessel, an electrolyte fluid including the organic molecules, and a power source. The reaction vessel includes a plurality of electrodes where no separator exists between the electrodes. The electrolyte fluid is provided between the plurality of electrodes of the reaction vessel and the power source can applies a voltage wave shape to the electrodes of the reaction vessel to digest the organic molecules.
    Type: Application
    Filed: September 28, 2012
    Publication date: April 11, 2013
    Inventor: Robert Brian Dopp
  • Patent number: 8377149
    Abstract: A process for making a catalytic electrode, a process for making an electrochemical cell with a catalytic electrode, and an electrochemical cell made according to the process. The catalytic electrode has an active layer comprising a catalytic material, an electrically conductive material and a binder, and a gas diffusion layer including a material that is permeable to gas entering or escaping from the cell but essentially impermeable to electrolyte. The gas diffusion layer is adhered to the active layer by a patterned pressure bonding process to provide the catalytic electrode in which the entire gas diffusion area is adhered to the active layer, with areas of relatively high and relatively low adhesion. The electrode has a high overall bond strength, and the permeability of the gas diffusion layer remains high it has been adhered to the active layer to provide excellent high power capability.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: February 19, 2013
    Assignee: Eveready Battery Company, Inc.
    Inventors: Robert Brian Dopp, Gary A Laisy
  • Publication number: 20120100986
    Abstract: A gas diffusion cathode for electrochemical cells provides higher power capability through the use of nano-particle catalysts. The catalysts comprise nanometer-sized particles of transition metals such as nickel, cobalt, manganese, iron, palladium, ruthenium, gold, silver, and lead, as well as alloys thereof, and respective oxides. These catalysts can substantially replace or eliminate platinum as a catalyst for oxygen reduction. Cathodes using such catalysts have applications to metal-air batteries, hydrogen fuel cells (PEMFCs), direct methanol fuel cells (DMFCs), direct oxidation fuel cells (DOFCs), and other air breathing electrochemical systems.
    Type: Application
    Filed: January 6, 2012
    Publication date: April 26, 2012
    Applicant: QUANTUMSPHERE, INC.
    Inventors: Robert Brian Dopp, Doug Carpenter, Kim McGrath
  • Publication number: 20120094216
    Abstract: A catalyst member comprising a blended mixture of nano-scale metal particles compressed with larger metal particles and sintered to form a structurally stable member of any desired shape. The catalyst member can be used in one of many different applications; for example, as an electrode in a fuel cell or in an electrolysis device to generate hydrogen and oxygen.
    Type: Application
    Filed: October 12, 2011
    Publication date: April 19, 2012
    Applicant: QuantumSphere, Inc.
    Inventors: R. Douglas Carpenter, Robert Brian Dopp, Kimberly McGrath
  • Publication number: 20110192717
    Abstract: A device and system useful for highly efficient chemical and electrochemical reactions is described. The device comprises a porous electrode and a plurality of suspended nanoparticles diffused within the void volume of the electrode when used within an electrolyte. The device is suitable within a system having a first and second chamber preferably positioned vertically with respect to each other, and each chamber containing an electrode and electrolyte with suspended nanoparticles therein. When reactive metal particles are diffused into the electrode structure and suspended in electrolyte by gasses, a fluidized bed is established. The reaction efficiency is increased and products can be produced at a higher rate. When an electrolysis device can be operated such that incoming reactants and outgoing products enter and exit from opposite faces of an electrode, reaction rate and efficiency are improved.
    Type: Application
    Filed: April 18, 2011
    Publication date: August 11, 2011
    Applicant: QUANTUMSPHERE INC.
    Inventor: Robert Brian Dopp
  • Publication number: 20110190116
    Abstract: A gas diffusion cathode for electrochemical cells provides higher power capability through the use of nano-particle catalysts. The catalysts comprise nanometer-sized particles of transition metals such as nickel, cobalt, manganese, iron, palladium, ruthenium, gold, silver, and lead, as well as alloys thereof, and respective oxides. These catalysts can substantially replace or eliminate platinum as a catalyst for oxygen reduction. Cathodes using such catalysts have applications to metal-air batteries, hydrogen fuel cells (PEMFCs), direct methanol fuel cells (DMFCs), direct oxidation fuel cells (DOFCs), and other air breathing electrochemical systems.
    Type: Application
    Filed: March 21, 2011
    Publication date: August 4, 2011
    Applicant: QUANTUMSPHERE, INC.
    Inventors: Robert Brian Dopp, Doug Carpenter, Kim McGrath
  • Publication number: 20110155571
    Abstract: A catalyst member comprising a blended mixture of nano-scale metal particles compressed with larger metal particles and sintered to form a structurally stable member of any desired shape. The catalyst member can be used in one of many different applications; for example, as an electrode in a fuel cell or in an electrolysis device to generate hydrogen and oxygen.
    Type: Application
    Filed: February 22, 2011
    Publication date: June 30, 2011
    Applicant: QUANTUMSPHERE, INC.
    Inventors: R. Douglas Carpenter, Robert Brian Dopp, Kimberly McGrath
  • Publication number: 20110130269
    Abstract: A composition useful in electrodes provides higher power capability through the use of nanoparticle catalysts present in the composition. Nanoparticles of transition metals are preferred such as manganese, nickel, cobalt, iron, palladium, ruthenium, gold, silver, and lead, as well as alloys thereof, and respective oxides. These nanoparticle catalysts can substantially replace or eliminate platinum as a catalyst for certain electrochemical reactions. Electrodes, used as anodes, cathodes, or both, using such catalysts have applications relating to metal-air batteries, hydrogen fuel cells (PEMFCs), direct methanol fuel cells (DMFCs), direct oxidation fuel cells (DOFCs), and other air or oxygen breathing electrochemical systems as well as some liquid diffusion electrodes.
    Type: Application
    Filed: February 7, 2011
    Publication date: June 2, 2011
    Applicant: QUANTUMSPHERE, INC.
    Inventors: Robert Brian Dopp, Kimberly McGrath, R. Douglas Carpenter
  • Publication number: 20110091796
    Abstract: A composition useful in electrodes provides higher power capability through the use of nanoparticle catalysts present in the composition. Nanoparticles of transition metals are preferred such as manganese, nickel, cobalt, iron, palladium, ruthenium, gold, silver, and lead, as well as alloys thereof, and respective oxides. These nanoparticle catalysts can substantially replace or eliminate platinum as a catalyst for certain electrochemical reactions. Electrodes, used as anodes, cathodes, or both, using such catalysts have applications relating to metal-air batteries, hydrogen fuel cells (PEMFCs), direct methanol fuel cells (DMFCs), direct oxidation fuel cells (DOFCs), and other air or oxygen breathing electrochemical systems as well as some liquid diffusion electrodes.
    Type: Application
    Filed: December 6, 2010
    Publication date: April 21, 2011
    Applicant: QUANTUMSPHERE, INC.
    Inventors: Robert Brian Dopp, Kimberly McGrath, R. Douglas Carpenter
  • Publication number: 20110083320
    Abstract: A process for making a catalytic electrode, a process for making an electrochemical cell with a catalytic electrode, and an electrochemical cell made according to the process. The catalytic electrode has an active layer comprising a catalytic material, an electrically conductive material and a binder, and a gas diffusion layer including a material that is permeable to gas entering or escaping from the cell but essentially impermeable to electrolyte. The gas diffusion layer is adhered to the active layer by a patterned pressure bonding process to provide the catalytic electrode in which the entire gas diffusion area is adhered to the active layer, with areas of relatively high and relatively low adhesion. The electrode has a high overall bond strength, and the permeability of the gas diffusion layer remains high it has been adhered to the active layer to provide excellent high power capability.
    Type: Application
    Filed: December 14, 2010
    Publication date: April 14, 2011
    Applicant: EVEREADY BATTERY COMPANY, INC.
    Inventors: Robert Brian Dopp, Gary A. Laisy
  • Publication number: 20100233577
    Abstract: A catalyst member comprising a blended mixture of nano-scale metal particles compressed with larger metal particles and sintered to form a structurally stable member of any desired shape. The catalyst member can be used in one of many different applications; for example, as an electrode in a fuel cell or in an electrolysis device to generate hydrogen and oxygen.
    Type: Application
    Filed: September 22, 2006
    Publication date: September 16, 2010
    Inventors: R. Douglas Carpenter, Robert Brian Dopp, Kimberly McGrath
  • Publication number: 20100167175
    Abstract: A composition useful in electrodes provides higher power capability through the use of nanoparticle catalysts present in the composition. Nanoparticles of transition metals are preferred such as manganese, nickel, cobalt, iron, palladium, ruthenium, gold, silver, and lead, as well as alloys thereof, and respective oxides. These nanoparticle catalysts can substantially replace or eliminate platinum as a catalyst for certain electrochemical reactions. Electrodes, used as anodes, cathodes, or both, using such catalysts have applications relating to metal-air batteries, hydrogen fuel cells (PEMFCs), direct methanol fuel cells (DMFCs), direct oxidation fuel cells (DOFCs), and other air or oxygen breathing electrochemical systems as well as some liquid diffusion electrodes.
    Type: Application
    Filed: March 16, 2010
    Publication date: July 1, 2010
    Applicant: QUANTUMSPHERE, INC.
    Inventors: Robert Brian Dopp, Kimberly McGrath, R. Douglas Carpenter
  • Patent number: 7713043
    Abstract: An apparatus for and a method of feeding powders to a subsequent processing step. In particular, the apparatus includes a first hopper, a first metering brush feed, an intermediate chamber, a second distribution brush, a level sensor, and a supply hopper to deliver powder to a pair of rollers. In one embodiment, the hopper is fitted to the roller diameter to produce a uniform, ribbon or free-standing sheets suitable for air-breathing battery and fuel cell electrodes.
    Type: Grant
    Filed: October 20, 2005
    Date of Patent: May 11, 2010
    Assignee: Quantumsphere, Inc.
    Inventors: Robert Brian Dopp, Allan Nettleton
  • Publication number: 20100069228
    Abstract: A composition useful in electrodes provides higher power capability through the use of nanoparticle catalysts present in the composition. Nanoparticles of transition metals are preferred such as manganese, nickel, cobalt, iron, palladium, ruthenium, gold, silver, and lead, as well as alloys thereof, and respective oxides. These nanoparticle catalysts can substantially replace or eliminate platinum as a catalyst for certain electrochemical reactions. Electrodes, used as anodes, cathodes, or both, using such catalysts have applications relating to metal-air batteries, hydrogen fuel cells (PEMFCs), direct methanol fuel cells (DMFCs), direct oxidation fuel cells (DOFCs), and other air or oxygen breathing electrochemical systems as well as some liquid diffusion electrodes.
    Type: Application
    Filed: October 29, 2009
    Publication date: March 18, 2010
    Applicant: QUANTUMSPHERE, INC.
    Inventors: Robert Brian Dopp, Kimberly McGrath, R. Douglas Carpenter
  • Publication number: 20090032391
    Abstract: A photolysis-assisted electrolysis device comprises at least one fluidized bed disposed in the device's housing wherein the fluidized bed comprises a reaction medium and photolysis-catalyzing nanoparticles suspended in the reaction medium. When the fluidized bed is exposed to light, the nanoparticles catalyze the photolysis of the reaction medium to form donor electrons. The donor electrons promote reduction of the reaction medium during an electrolysis reaction, for example, the reduction of water to form hydrogen gas.
    Type: Application
    Filed: May 2, 2008
    Publication date: February 5, 2009
    Inventors: Robert Brian Dopp, Kimberly McGrath
  • Publication number: 20090004549
    Abstract: A device for highly efficient fuel cell reactions is described. The device comprises a porous electrode and a plurality of suspended nanoparticles diffused within the void volume of the electrode when used within an electrolyte, wherein each chamber contains an electrode and electrolyte with suspended nanoparticles therein. When reactive metal particles are diffused into the electrode structure and suspended in electrolyte by gasses, a fluidized bed is established, allowing for improved power generation. Ideally, this device and system can be used to produce high power output.
    Type: Application
    Filed: March 21, 2008
    Publication date: January 1, 2009
    Applicant: Quantumsphere, Inc.
    Inventors: Robert Brian Dopp, Kimberly McGrath
  • Publication number: 20080280190
    Abstract: A composition useful in electrodes provides higher power capability through the use of nanoparticle catalysts present in the composition. Nanoparticles of transition metals are preferred such as manganese, nickel, cobalt, iron, palladium, ruthenium, gold, silver, and lead, as well as alloys thereof, and respective oxides. These nanoparticle catalysts can substantially replace or eliminate platinum as a catalyst for certain electrochemical reactions. Electrodes, used as anodes, cathodes, or both, using such catalysts have applications relating to metal-air batteries, hydrogen fuel cells (PEMFCs), direct methanol fuel cells (DMFCs), direct oxidation fuel cells (DOFCs), and other air or oxygen breathing electrochemical systems as well as some liquid diffusion electrodes.
    Type: Application
    Filed: July 7, 2006
    Publication date: November 13, 2008
    Inventors: Robert Brian Dopp, Kimberly McGrath, R. Douglas Carpenter