Patents by Inventor Robert C. Baraszu

Robert C. Baraszu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230103248
    Abstract: A method for controlling operation of a motor vehicle includes an electronic controller receiving, e.g., from a vehicle-mounted sensor array, sensor data with dynamics information for a target vehicle and, using the received sensor data, predicting a lane assignment for the target vehicle on a road segment proximate the host vehicle. The electronic controller also receives map data with roadway information for the road segment; the controller fuses the sensor and map data to construct a polynomial overlay for a host lane of the road segment across which travels the host vehicle. A piecewise linearized road map of the host lane is constructed and combined with the predicted lane assignment and polynomial overlay to calculate a lane assignment for the target vehicle. The controller then transmits one or more command signals to a resident vehicle system to execute one or more control operations using the target vehicle's calculated lane assignment.
    Type: Application
    Filed: September 28, 2021
    Publication date: March 30, 2023
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Joseph R. Abrash, Paul A. Adam, Robert C. Baraszu, Dmitriy Feldman, Yadollah Sabri
  • Patent number: 11535251
    Abstract: A full speed range adaptive cruise control system for a host vehicle includes a plurality of sensors that each generate a signal, a memory that includes executable instructions and a processor that executes the executable instructions. The executable instructions enable the processor to detect a target vehicle as being stopped along a route based upon the signals from the plurality of sensors, cause the host vehicle to stop at a distance from the target vehicle, detect the target vehicle moving along the route after the host vehicle has stopped based upon the signals from the plurality of sensors, determine whether a first predetermined period of time has elapsed since the host vehicle has stopped, determine whether a first predetermined condition is satisfied if the first predetermined period of time has elapsed, and cause the host vehicle to move if the system determines that the first predetermined condition is satisfied.
    Type: Grant
    Filed: August 11, 2020
    Date of Patent: December 27, 2022
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Amanpal S. Grewal, Dmitriy Feldman, Robert C. Baraszu, Chinar Dhamija
  • Publication number: 20220048507
    Abstract: A full speed range adaptive cruise control system for a host vehicle includes a plurality of sensors that each generate a signal, a memory that includes executable instructions and a processor that executes the executable instructions. The executable instructions enable the processor to detect a target vehicle as being stopped along a route based upon the signals from the plurality of sensors, cause the host vehicle to stop at a distance from the target vehicle, detect the target vehicle moving along the route after the host vehicle has stopped based upon the signals from the plurality of sensors, determine whether a first predetermined period of time has elapsed since the host vehicle has stopped, determine whether a first predetermined condition is satisfied if the first predetermined period of time has elapsed, and cause the host vehicle to move if the system determines that the first predetermined condition is satisfied.
    Type: Application
    Filed: August 11, 2020
    Publication date: February 17, 2022
    Inventors: Amanpal S. Grewal, Dmitriy Feldman, Robert C. Baraszu, Chinar Dhamija
  • Publication number: 20210394756
    Abstract: One general aspect includes a system to commence host vehicle movement upon being stopped behind a target vehicle, the system includes a memory configured to include one or more executable instructions and a processor configured to execute the executable instructions, where the executable instructions enable the processor to: detect the target vehicle as being stopped along a route; cause the host vehicle to stop at a first distance from the target vehicle; detect a transition of one or more brake lights of the target vehicle from an ON state to an OFF state; and after the one or more brake lights are detected to transition from the ON state to the OFF state, cause the host vehicle to move at a slow speed in the direction of the target vehicle.
    Type: Application
    Filed: June 18, 2020
    Publication date: December 23, 2021
    Inventors: Amanpal S. Grewal, Dmitriy Feldman, Robert C. Baraszu, Daniel R. Kraft, Benjamin T. Llewellyn
  • Patent number: 10864910
    Abstract: Presented are automated driving systems for intelligent vehicle control, methods for making/using such systems, and motor vehicles equipped with such automated driving systems. A method for executing an automated driving operation includes: determining path plan data for a subject motor vehicle, including current vehicle location and predicted route data; receiving, from a network of sensing devices, sensor data indicative of current object position and object dynamics of a target object; applying sensor fusion techniques to the received sensor data to determine a threat confidence value that is predictive of target object intrusion with respect to the vehicle's location and predicted route; determining if this threat confidence value is greater than a calibrated threshold value; and, responsive to the threat confidence value being greater than the calibrated threshold value, transmitting one or more command signals to one or more vehicle systems (e.g.
    Type: Grant
    Filed: May 16, 2018
    Date of Patent: December 15, 2020
    Assignee: GM Global Technology Operations LLC
    Inventors: Paul A. Adam, Tetyana V. Mamchuk, Dmitriy Feldman, Robert C. Baraszu
  • Publication number: 20190351899
    Abstract: Presented are automated driving systems for intelligent vehicle control, methods for making/using such systems, and motor vehicles equipped with such automated driving systems. A method for executing an automated driving operation includes: determining path plan data for a subject motor vehicle, including current vehicle location and predicted route data; receiving, from a network of sensing devices, sensor data indicative of current object position and object dynamics of a target object; applying sensor fusion techniques to the received sensor data to determine a threat confidence value that is predictive of target object intrusion with respect to the vehicle's location and predicted route; determining if this threat confidence value is greater than a calibrated threshold value; and, responsive to the threat confidence value being greater than the calibrated threshold value, transmitting one or more command signals to one or more vehicle systems (e.g.
    Type: Application
    Filed: May 16, 2018
    Publication date: November 21, 2019
    Applicant: GM Global Technology Operations LLC
    Inventors: Paul A. Adam, Tetyana Mamchuk, Dmitriy Feldman, Robert C. Baraszu
  • Patent number: 10160342
    Abstract: A method for dynamically adjusting a battery current limit in a system having a battery pack includes determining a battery pack current as a charge current flowing into or a discharge current flowing from the battery pack, and also calculating a time-windowed average current for each of the charge current, the discharge current, and an RMS current of the battery pack. The battery current limit may be dynamically adjusted when any or all of the calculated time-windowed averages exceeds a corresponding calibrated control threshold. The battery current limit is a window-specific current limit that is greater than the calibrated control threshold and less than a static/fixed current limit for the battery pack. A system includes the battery pack, a sensor operable for measuring a current inflow/outflow to/from the battery pack, and a controller programmed to dynamically adjust the battery current limit using the above method.
    Type: Grant
    Filed: August 25, 2016
    Date of Patent: December 25, 2018
    Assignee: GM Global Technology Operations LLC
    Inventors: Robert C. Baraszu, Daniel R. Brouns, Patrick E. Frost, Kurt M. Johnson
  • Publication number: 20170282746
    Abstract: A method for dynamically adjusting a battery current limit in a system having a battery pack includes determining a battery pack current as a charge current flowing into or a discharge current flowing from the battery pack, and also calculating a time-windowed average current for each of the charge current, the discharge current, and an RMS current of the battery pack. The battery current limit may be dynamically adjusted when any or all of the calculated time-windowed averages exceeds a corresponding calibrated control threshold. The battery current limit is a window-specific current limit that is greater than the calibrated control threshold and less than a static/fixed current limit for the battery pack. A system includes the battery pack, a sensor operable for measuring a current inflow/outflow to/from the battery pack, and a controller programmed to dynamically adjust the battery current limit using the above method.
    Type: Application
    Filed: August 25, 2016
    Publication date: October 5, 2017
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Robert C. Baraszu, Daniel R. Brouns, Patrick E. Frost, Kurt M. Johnson
  • Patent number: 9575128
    Abstract: Adaptive estimation techniques to create a battery state estimator to estimate power capabilities of the battery pack in a vehicle. The estimator adaptively updates circuit model parameters used to calculate the voltage states of the ECM of a battery pack. The adaptive estimation techniques may also be used to calculate a solid-state diffusion voltage effects within the battery pack. The adaptive estimator is used to increase robustness of the calculation to sensor noise, modeling error, and battery pack degradation.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: February 21, 2017
    Assignee: GM Global Technology Operations LLC
    Inventors: Patrick Frost, Brian J. Koch, Damon R. Frisch, Brett B. Stawinski, Patricia M. Laskowsky, Kurt M. Johnson, Robert C. Baraszu
  • Patent number: 9506992
    Abstract: Systems and methods are disclosed for determining a weld state of a contactor (e.g., normal, partially welded, and/or welded states) based on a variety of actuator coil characteristics during actuation. In some embodiments, the disclosed systems and methods may be utilized in connection with determining contactor weld states in a variety of contactor designs. In further embodiments, the disclosed systems and methods may utilize a probability weighted score accounting for contactor design characteristics and information obtained from a reference contactor to identify a weld state associated with a contactor device.
    Type: Grant
    Filed: March 25, 2015
    Date of Patent: November 29, 2016
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Robert C. Baraszu, Andrew J. Namou, David S. Maxwell
  • Patent number: 9472959
    Abstract: System and methods for balancing a vehicle battery system are presented. In certain embodiments, a method for balancing battery system having multiple battery sections may include receiving estimated states of charge of the battery sections. Based on the estimated states of charge, a determination may be made whether the battery sections have states of charge within one of plurality of regions included in a state of charge window. Based on the determination, one of a plurality of different balancing algorithms may be utilized to control transfer energy between the battery sections to balance the battery sections.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: October 18, 2016
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Kurt M. Johnson, Robert C. Baraszu
  • Publication number: 20160282420
    Abstract: Systems and methods are disclosed for determining a weld state of a contactor (e.g., normal, partially welded, and/or welded states) based on a variety of actuator coil characteristics during actuation. In some embodiments, the disclosed systems and methods may be utilized in connection with determining contactor weld states in a variety of contactor designs. In further embodiments, the disclosed systems and methods may utilize a probability weighted score accounting for contactor design characteristics and information obtained from a reference contactor to identify a weld state associated with a contactor device.
    Type: Application
    Filed: March 25, 2015
    Publication date: September 29, 2016
    Inventors: ROBERT C. BARASZU, ANDREW J. NAMOU, DAVID S. MAXWELL
  • Patent number: 9395327
    Abstract: A battery system may include a plurality of subdivisions, such as battery cells or sub-packs. A measurement system configured to determine a subdivision electrical parameter associated with each of a plurality of subdivisions. A battery control may identify a subdivision satisfying a criterion based on the plurality of subdivision electrical parameters. According to some embodiments, the battery control system may determine a ratio of the subdivision electrical parameter of the identified subdivision to the electrical parameter of the battery pack. The ratio may be used to scale the electrical parameter associated with the battery pack by the ratio. According to other embodiments, the subdivision electrical parameter associated with the identified subdivision may be provided to a battery state estimation system. The scaled electrical parameter or the electrical parameter associated with the identified subdivision may be used by a battery state estimation system to generate an estimated battery state.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: July 19, 2016
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Robert C. Baraszu, Kurt M. Johnson, Zachary D. Bylsma, Damon R. Frisch, Wei Liu, David S. Maxwell
  • Patent number: 9354277
    Abstract: A system and method for estimating parameters of a rechargeable energy storage system during a plug-in charge mode include reading a first measured voltage and a measured current from the rechargeable energy storage system while charging the rechargeable energy storage system during a plug-in charge mode, interrupting the charge to stop current flow to the rechargeable energy storage system for a predetermined period of time, reading a second measured voltage during the charge interrupt, calculating a resistance based on the first measured voltage, the second measured voltage and the measured current, calculating an open circuit voltage of the rechargeable energy storage system based on the resistance, the second measured voltage, the measured current and determining the state-of-charge for the rechargeable energy storage system using the open circuit voltage.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: May 31, 2016
    Assignee: GM Global Technology Operatins LLC
    Inventors: Jian Lin, Xidong Tang, Brian J. Koch, Robert C. Baraszu, Monika A. Minarcin, Steven A. Patterson
  • Patent number: 9211802
    Abstract: System and methods for identifying a weak subdivision in a battery system are presented. In certain embodiments, a system may include a battery pack that includes multiple subdivisions. A measurement system may be configured to determine multiple subdivision electrical parameters associated with the subdivisions. A battery control system may identify a weakest subdivision based one on or more calculated derivative ratios of a subdivision electrical parameter associated with one subdivision of the battery pack relative to a subdivision electrical parameter associated with another subdivision.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: December 15, 2015
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Robert C. Baraszu, Kurt M. Johnson, Damon R. Frisch
  • Patent number: 9190853
    Abstract: Methods and systems for adjusting the voltage limits of a battery. In some implementations, voltage data may be received from each of a plurality of battery sections of a vehicle battery. A voltage offset for the vehicle battery may be calculated using the voltage data. The voltage offset may be calculated by determining a difference between an average voltage taken from each of the plurality of battery sections and at least one of a minimum voltage of all of the battery cells and an average cell voltage from a battery section having the lowest average cell voltage. The voltage offset may be applied to dynamically adjust a voltage limit associated with the vehicle battery so as to prevent any of the battery cells in the vehicle battery from exceeding the voltage limit.
    Type: Grant
    Filed: July 25, 2013
    Date of Patent: November 17, 2015
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Kurt M. Johnson, Robert C. Baraszu, Zachary D. Bylsma, Ashley McAllister, George Robison
  • Publication number: 20150219726
    Abstract: System and methods for estimating a state of a battery utilizing an adaptive battery model are presented. The model may utilize a multi-RC electric circuit model designed to represent an open circuit voltage and/or an impedance of an actual battery system. A state observer may be utilized in connection with estimating parameters associated with a model of the battery system (e.g., resistances in the multi-RC circuit model). Systems and methods disclosed herein may further employ a blending technique utilizing an Ah-based SOC determination and an OCV-based SOC determination in estimating a state of a battery system.
    Type: Application
    Filed: February 3, 2014
    Publication date: August 6, 2015
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: JOCHEN LENZ, ROBERT C. BARASZU
  • Patent number: 9065278
    Abstract: Systems and methods for estimating the relative capacity of individual battery subdivisions in a battery system are presented. In some embodiments, a system may include calculation system configured to analyze the electrical parameters to generate derivative values of the parameters over a period of time. The calculation system may further calculate summation values associated with individual battery subdivisions based upon the derivate values. A battery control system may utilize the summation values to generate one or more commands configured to control an aspect of an operation of the battery pack based on using the summation values. The summation values associated with battery subdivisions may be used to determine a relative capacity for storing electrical energy, according to some embodiments. The determination of relative capacity may be used by a control system to prevent over-discharge of a battery subdivision having the lowest energy storage capacity.
    Type: Grant
    Filed: January 22, 2013
    Date of Patent: June 23, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Robert C. Baraszu, Kurt M. Johnson, Zachary D. Bylsma, Damon R. Frisch, George Robison, Ashley McAllister
  • Publication number: 20150028814
    Abstract: Methods and systems for adjusting the voltage limits of a battery. In some implementations, voltage data may be received from each of a plurality of battery sections of a vehicle battery. A voltage offset for the vehicle battery may be calculated using the voltage data. The voltage offset may be calculated by determining a difference between an average voltage taken from each of the plurality of battery sections and at least one of a minimum voltage of all of the battery cells and an average cell voltage from a battery section having the lowest average cell voltage. The voltage offset may be applied to dynamically adjust a voltage limit associated with the vehicle battery so as to prevent any of the battery cells in the vehicle battery from exceeding the voltage limit.
    Type: Application
    Filed: July 25, 2013
    Publication date: January 29, 2015
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: KURT M. JOHNSON, ROBERT C. BARASZU, ZACHARY D. BYLSMA, ASHLEY MCALLISTER, GEORGE ROBISON
  • Publication number: 20140278167
    Abstract: Adaptive estimation techniques to create a battery state estimator to estimate power capabilities of the battery pack in a vehicle. The estimator adaptively updates circuit model parameters used to calculate the voltage states of the ECM of a battery pack. The adaptive estimation techniques may also be used to calculate a solid-state diffusion voltage effects within the battery pack. The adaptive estimator is used to increase robustness of the calculation to sensor noise, modeling error, and battery pack degradation.
    Type: Application
    Filed: March 12, 2013
    Publication date: September 18, 2014
    Applicant: GM Global Technology Operations LLC
    Inventors: Patrick Frost, Brian J. Koch, Damon R. Frisch, Brett B. Stawinski, Patricia M. Laskowsky, Kurt M. Johnson, Robert C. Baraszu