Patents by Inventor Robert C. Marion

Robert C. Marion has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10700649
    Abstract: A system and method for using an embedded microprocessor in an RF amplifier. The use of an embedded microprocessor avoids manual calibration. The Microprocessor collects initial amplifier performance data based on a set of parameters and calculates the needed corrections. The microprocessor can change levels within the circuit to achieve those operating points. The embedded microprocessor sets voltage levels with internal circuitry and communicates this information externally through a serial communication port, or the like, to allow a user to communicate with and look at the amplifier data and readjust the internal bias levels, as needed. Thus, the internal microprocessor provides for calibration, self-testing, and monitoring of the RF amplifier and also functions as an in situ bias and temperature compensation controller for use in the presence of temperature variation and provides bias sequencing control to protect against improper applied timing of voltage inputs to the amplifier.
    Type: Grant
    Filed: September 13, 2018
    Date of Patent: June 30, 2020
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Frank A. Mannarino, Robert Actis, Robert C. Marion, John R. Muir, Steven Rajkowski, Eldon M. Sutphin
  • Publication number: 20200091875
    Abstract: A system and method for using an embedded microprocessor in an RF amplifier. The use of an embedded microprocessor avoids manual calibration. The Microprocessor collects initial amplifier performance data based on a set of parameters and calculates the needed corrections. The microprocessor can change levels within the circuit to achieve those operating points. The embedded microprocessor sets voltage levels with internal circuitry and communicates this information externally through a serial communication port, or the like, to allow a user to communicate with and look at the amplifier data and readjust the internal bias levels, as needed. Thus, the internal microprocessor provides for calibration, self-testing, and monitoring of the RF amplifier and also functions as an in situ bias and temperature compensation controller for use in the presence of temperature variation and provides bias sequencing control to protect against improper applied timing of voltage inputs to the amplifier.
    Type: Application
    Filed: September 13, 2018
    Publication date: March 19, 2020
    Inventors: Frank A. MANNARINO, Robert ACTIS, Robert C. MARION, John R. MUIR, Steven RAJKOWSKI, Eldon M. SUTPHIN
  • Patent number: 7589887
    Abstract: An optical amplifier is included within a fiber optic transmission system for driving a fiber optic towed decoy system. The optical amplifier boosts the optical power of a laser on board the driving system and compensates for link loss within the driving system and link loss associated with a blind connection between the driving system and the towed decoy. The optical amplifier may be an erbium doped fiber amplifier and may be run in a saturation mode. The result is a towed decoy system capable of operating more consistently across a range of platforms and in some cases less stringent gain requirements on towed decoy components.
    Type: Grant
    Filed: May 24, 2006
    Date of Patent: September 15, 2009
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventor: Robert C. Marion
  • Patent number: 7379232
    Abstract: An optical attenuator is included within an aircraft decoy driver system for driving a fiber optic towed decoy system to compensate for variability in the fiber optic connection to the towed decoy system. The attenuator is controlled by a control signal from the towed decoy system and adjusts the link gain based on this feedback control signal to compensate for link loss, which is highly variable and may include losses as a function of cable, connectors and splices, and to maintain a relatively constant gain. To ensure the broadest range of performance, a higher power laser can be used to drive an external Mach Zhender Modulator or an erbium doped fiber amplifier (EDFA) prior to the optical attenuator. The result is a fiber optic towed decoy system that is adaptable to various platforms and design configurations without degradation in performance of the towed decoy system.
    Type: Grant
    Filed: May 24, 2006
    Date of Patent: May 27, 2008
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventor: Robert C. Marion