Patents by Inventor Robert C. Mucic

Robert C. Mucic has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240065585
    Abstract: The invention provides amperometric analyte sensor systems comprising one or more electrodes designed to monitor in vivo levels of 3-hydroxybutyrate (and optionally glucose as well) in order to facilitate the management of diabetic ketoacidosis. The invention further includes compositions, elements and methods useful with such amperometric analyte sensor systems.
    Type: Application
    Filed: August 7, 2023
    Publication date: February 29, 2024
    Applicant: Medtronic MiniMed, Inc.
    Inventors: Quyen B. Ong, Michal Galik, Hanieh Ghadimi, Carlos E. Maldonado, Ashwin K. Rao, Robert C. Mucic
  • Publication number: 20230241315
    Abstract: Medical devices and related systems and methods are provided. A method of controlling medication delivery based on sensor input involves obtaining a measurement parameter representing an electrical response of a first instance of a sensing element to a physiological condition of a person. The measurement parameter is converted into a calibrated measurement parameter using calibration data specific to the first instance of the sensing element. The method further involves determining a measurement value using the calibrated measurement parameter as input to a performance model. The performance model is derived from historical calibrated measurement parameters and corresponding reference values. The historical calibrated measurement parameters are from other instances of the sensing element. A command is then determined based on the measurement value and sent to a medical device. The command causes the medical device to deliver a dose of medication influencing the physiological condition of the person.
    Type: Application
    Filed: April 7, 2023
    Publication date: August 3, 2023
    Inventors: Akhil Srinivasan, Peter Ajemba, Steven C. Jacks, Robert C. Mucic, Tyler R. Wong, Melissa Tsang, Chi-En Lin, Mohsen Askarinya, David Probst
  • Patent number: 11654235
    Abstract: Medical devices and related systems and methods are provided. A method of calibrating an instance of a sensing element involves obtaining fabrication process measurement data from a substrate having the instance of the sensing element fabricated thereon, obtaining a calibration model associated with the sensing element, determining calibration data associated with the instance of the sensing element for converting the electrical signals into a calibrated measurement parameter based on the fabrication process measurement data using the calibration model, and storing the calibration data in a data storage element associated with the instance of the sensing element.
    Type: Grant
    Filed: September 12, 2019
    Date of Patent: May 23, 2023
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Akhil Srinivasan, Peter Ajemba, Steven C. Jacks, Robert C. Mucic, Tyler R. Wong, Melissa Tsang, Chi-En Lin, Mohsen Askarinya, David Probst
  • Publication number: 20230060985
    Abstract: A single flex double-sided electrode useful in a continuous glucose monitoring sensor. In one example, a counter electrode is placed on the back-side of the flex and a work electrode is placed on the top-side of the sensor flex. The electrode is fabricated on physical vapor deposited metal deposited on a base substrate. Adhesion of the electrode to the base substrate is carefully controlled so that the electrode can be processed on the substrate and subsequently removed from the substrate after processing.
    Type: Application
    Filed: October 25, 2022
    Publication date: March 2, 2023
    Applicant: Medtronic MiniMed, Inc.
    Inventors: Akhil Srinivasan, Barry P. Pham, Robert C. Mucic, Tyler R. Wong
  • Patent number: 11583213
    Abstract: A single flex double-sided electrode useful in a continuous glucose monitoring sensor. In one example, a counter electrode is placed on the back-side of the flex and a work electrode is placed on the top-side of the sensor flex. The electrode is fabricated on physical vapor deposited metal deposited on a base substrate. Adhesion of the electrode to the base substrate is carefully controlled so that the electrode can be processed on the substrate and subsequently removed from the substrate after processing.
    Type: Grant
    Filed: February 8, 2018
    Date of Patent: February 21, 2023
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Akhil Srinivasan, Barry P. Pham, Robert C. Mucic, Tyler R. Wong
  • Patent number: 11317867
    Abstract: A physiological characteristic sensor assembly includes a flexible top housing including a needle port having a central opening, and a flexible lower housing defining a sensor bore through the lower housing, the sensor bore coaxial with the central opening of the needle port. The physiological characteristic sensor assembly also includes an electrical subsystem disposed between the top housing and the lower housing. The electrical subsystem includes a flexible printed circuit board having a sensor contact pad, a physiological characteristic sensor and an electrically conductive adhesive patch. The physiological characteristic sensor has a distal end that extends through the needle port and a proximal end that includes at least one electrical contact. The conductive adhesive patch electrically and physically couples the at least one electrical contact of the physiological characteristic sensor to the sensor contact pad of the flexible printed circuit board.
    Type: Grant
    Filed: April 23, 2019
    Date of Patent: May 3, 2022
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Ellis Garai, David Choy, David C. Antonio, Robert C. Mucic
  • Publication number: 20220054057
    Abstract: The invention disclosed herein includes electrode compositions formed from processes that sputter metal in a manner that produces pillar architectures. Embodiments of the invention can be used in analyte sensors having such electrode architectures as well as methods for making and using these sensor electrodes. A number of working embodiments of the invention are shown to be useful in amperometric glucose sensors worn by diabetic individuals. However, the metal pillar structures have wide ranging applicability and should increase surface area and decrease charge density for catalyst layers or electrodes used with sensing, power generation, recording, and stimulation, in vitro and/or in the body, or outside the body.
    Type: Application
    Filed: September 3, 2021
    Publication date: February 24, 2022
    Applicant: Medtronic MiniMed, Inc.
    Inventors: Akhil Srinivasan, Melissa Tsang, Robert C. Mucic, Tyler R. Wong, Rui Kong, Barry P. Pham
  • Publication number: 20220047193
    Abstract: Embodiments of the invention provide amperometric analyte sensors having optimized elements such as interference rejection membranes as well as methods for making and using such sensors. The amperometric analyte sensor apparatus comprises: a base layer; a conductive layer disposed on the base layer and comprising a working electrode; an interference rejection membrane disposed on an electroactive surface of the working electrode, wherein the interference rejection membrane comprises poly(vinyl alcohol) (PVA) polymers crosslinked by an acid crosslinker, wherein the crosslinker is a dicarboxylic acid type monomer or a polymer comprising a carboxylic acid group; and an analyte sensing layer. While embodiments of the innovation can be used in a variety of contexts, typical embodiments of the invention include glucose sensors used in the management of diabetes.
    Type: Application
    Filed: October 29, 2021
    Publication date: February 17, 2022
    Applicant: Medtronic MiniMed, Inc.
    Inventors: Qingling Yang, Robert C. Mucic
  • Patent number: 11224361
    Abstract: A sensor introducer for a physiological characteristic sensor assembly includes a sensor introducer body that includes an outer housing that defines an opening to receive the physiological characteristic sensor assembly and an inner housing surrounded by the outer housing. The sensor introducer includes a cradle movable relative to the inner housing from a first position to a second position to deploy the physiological characteristic sensor assembly. The cradle has a cradle flange to receive the physiological characteristic sensor assembly and a cradle body that receives a needle assembly. The cradle body includes at least one locking projection that engages the inner housing to inhibit the movement of the cradle relative to the inner housing in the first position and the at least one locking projection is movable relative to the inner housing to enable the cradle to move from the first position to the second position.
    Type: Grant
    Filed: April 23, 2019
    Date of Patent: January 18, 2022
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Ellis Garai, David Choy, Robert C. Mucic, David C. Antonio
  • Patent number: 11134868
    Abstract: The invention disclosed herein includes electrode compositions formed from processes that sputter metal in a manner that produces pillar architectures. Embodiments of the invention can be used in analyte sensors having such electrode architectures as well as methods for making and using these sensor electrodes. A number of working embodiments of the invention are shown to be useful in amperometric glucose sensors worn by diabetic individuals. However, the metal pillar structures have wide ranging applicability and should increase surface area and decrease charge density for catalyst layers or electrodes used with sensing, power generation, recording, and stimulation, in vitro and/or in the body, or outside the body.
    Type: Grant
    Filed: March 15, 2018
    Date of Patent: October 5, 2021
    Assignee: Medtronic MiniMed, Inc.
    Inventors: Akhil Srinivasan, Melissa Tsang, Robert C. Mucic, Tyler R. Wong, Rui Kong, Barry P. Pham
  • Publication number: 20210077717
    Abstract: Medical devices and related systems and methods are provided. A method of calibrating an instance of a sensing element involves obtaining fabrication process measurement data from a substrate having the instance of the sensing element fabricated thereon, obtaining a calibration model associated with the sensing element, determining calibration data associated with the instance of the sensing element for converting the electrical signals into a calibrated measurement parameter based on the fabrication process measurement data using the calibration model, and storing the calibration data in a data storage element associated with the instance of the sensing element.
    Type: Application
    Filed: September 12, 2019
    Publication date: March 18, 2021
    Inventors: Akhil Srinivasan, Peter Ajemba, Steven C. Jacks, Robert C. Mucic, Tyler R. Wong, Melissa Tsang, Chi-En Lin, Mohsen Askarinya, David Probst
  • Publication number: 20200337642
    Abstract: A physiological characteristic sensor assembly includes a flexible top housing including a needle port having a central opening, and a flexible lower housing defining a sensor bore through the lower housing, the sensor bore coaxial with the central opening of the needle port. The physiological characteristic sensor assembly also includes an electrical subsystem disposed between the top housing and the lower housing. The electrical subsystem includes a flexible printed circuit board having a sensor contact pad, a physiological characteristic sensor and an electrically conductive adhesive patch. The physiological characteristic sensor has a distal end that extends through the needle port and a proximal end that includes at least one electrical contact. The conductive adhesive patch electrically and physically couples the at least one electrical contact of the physiological characteristic sensor to the sensor contact pad of the flexible printed circuit board.
    Type: Application
    Filed: April 23, 2019
    Publication date: October 29, 2020
    Inventors: Ellis Garai, David Choy, David C. Antonio, Robert C. Mucic
  • Publication number: 20200337608
    Abstract: A sensor introducer for a physiological characteristic sensor assembly includes a sensor introducer body that includes an outer housing that defines an opening to receive the physiological characteristic sensor assembly and an inner housing surrounded by the outer housing. The sensor introducer includes a cradle movable relative to the inner housing from a first position to a second position to deploy the physiological characteristic sensor assembly. The cradle has a cradle flange to receive the physiological characteristic sensor assembly and a cradle body that receives a needle assembly. The cradle body includes at least one locking projection that engages the inner housing to inhibit the movement of the cradle relative to the inner housing in the first position and the at least one locking projection is movable relative to the inner housing to enable the cradle to move from the first position to the second position.
    Type: Application
    Filed: April 23, 2019
    Publication date: October 29, 2020
    Inventors: Ellis Garai, David Choy, Robert C. Mucic, David C. Antonio
  • Publication number: 20190239778
    Abstract: A single flex double-sided electrode useful in a continuous glucose monitoring sensor. In one example, a counter electrode is placed on the back-side of the flex and a work electrode is placed on the top-side of the sensor flex. The electrode is fabricated on physical vapor deposited metal deposited on a base substrate. Adhesion of the electrode to the base substrate is carefully controlled so that the electrode can be processed on the substrate and subsequently removed from the substrate after processing.
    Type: Application
    Filed: February 8, 2018
    Publication date: August 8, 2019
    Applicant: MEDTRONIC MINIMED, INC.
    Inventors: Akhil Srinivasan, Barry P. Pham, Robert C. Mucic, Tyler R. Wong
  • Publication number: 20190094169
    Abstract: The invention pertains to analyte sensors designed to include layered compositions that provide these sensors with enhanced functional and/or material properties including, for example, resistance to damage caused by ethylene oxide during sterilization processes. Embodiments of the invention include polyvinyl alcohol N-methyl-4(4?-formylstyryl)pyridinium (SbQ) polymer materials and methods for employing such materials during the ethylene oxide sterilization of glucose sensors.
    Type: Application
    Filed: November 26, 2018
    Publication date: March 28, 2019
    Applicant: MEDTRONIC MINIMED, INC.
    Inventors: Rajiv Shah, Qingling Yang, Robert C. Mucic, Jenn-Hann Larry Wang
  • Publication number: 20190008425
    Abstract: The invention disclosed herein includes electrode compositions formed from processes that sputter metal in a manner that produces pillar architectures. Embodiments of the invention can be used in analyte sensors having such electrode architectures as well as methods for making and using these sensor electrodes. A number of working embodiments of the invention are shown to be useful in amperometric glucose sensors worn by diabetic individuals. However, the metal pillar structures have wide ranging applicability and should increase surface area and decrease charge density for catalyst layers or electrodes used with sensing, power generation, recording, and stimulation, in vitro and/or in the body, or outside the body.
    Type: Application
    Filed: March 15, 2018
    Publication date: January 10, 2019
    Applicant: MEDTRONIC MINIMED, INC.
    Inventors: Akhil Srinivasan, Melissa Tsang, Robert C. Mucic, Tyler R. Wong, Rui Kong, Barry P. Pham
  • Publication number: 20170311858
    Abstract: Embodiments of the invention provide amperometric analyte sensors having optimized elements such as interference rejection membranes as well as methods for making and using such sensors. The amperometric analyte sensor apparatus comprises: a base layer; a conductive layer disposed on the base layer and comprising a working electrode; an interference rejection membrane disposed on an electroactive surface of the working electrode, wherein the interference rejection membrane comprises poly(vinyl alcohol) (PVA) polymers crosslinked by an acid crosslinker, wherein the crosslinker is a dicarboxylic acid type monomer or a polymer comprising a carboxylic acid group; and an analyte sensing layer. While embodiments of the innovation can be used in a variety of contexts, typical embodiments of the invention include glucose sensors used in the management of diabetes.
    Type: Application
    Filed: April 27, 2016
    Publication date: November 2, 2017
    Applicant: Medtronic MiniMed, Inc.
    Inventors: Qingling Yang, Robert C. Mucic
  • Patent number: 9632060
    Abstract: A diagnostic Electrochemical Impedance Spectroscopy (EIS) procedure is applied to measure values of impedance-related parameters for one or more sensing electrodes. The parameters may include real impedance, imaginary impedance, impedance magnitude, and/or phase angle. The measured values of the impedance-related parameters are then used in performing sensor diagnostics, calculating a highly-reliable fused sensor glucose value based on signals from a plurality of redundant sensing electrodes, calibrating sensors, detecting interferents within close proximity of one or more sensing electrodes, and testing surface area characteristics of electroplated electrodes. Advantageously, impedance-related parameters can be defined that are substantially glucose-independent over specific ranges of frequencies. An Application Specific Integrated Circuit (ASIC) enables implementation of the EIS-based diagnostics, fusion algorithms, and other processes based on measurement of EIS-based parameters.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: April 25, 2017
    Assignee: MEDTRONIC MINIMED, INC.
    Inventors: Rajiv Shah, Robert C. Mucic, Genival D. de Barros, Carlos A. Callirgos, Manjunath Sirigiri, Joseph Paul Brinson
  • Publication number: 20150122645
    Abstract: Embodiments of the invention provide analyte sensors formed from layered materials that include polymeric enzyme compositions selected to provide advantageous material properties, as well as methods for making and using such sensors. Typical embodiments of the invention include glucose sensors used in the management of diabetes.
    Type: Application
    Filed: November 7, 2013
    Publication date: May 7, 2015
    Inventors: Qingling Yang, Rajiv Shah, Robert C. Mucic, Mercedes M. Perez, Ting Huang
  • Publication number: 20150122647
    Abstract: The invention pertains to analyte sensors designed to include layered compositions that provide these sensors with enhanced functional and/or material properties including, for example, resistance to damage caused by ethylene oxide during sterilization processes. Embodiments of the invention include polyvinyl alcohol N-methyl-4(4?-formylstyryl)pyridinium (SbQ) polymer materials and methods for employing such materials during the ethylene oxide sterilization of glucose sensors.
    Type: Application
    Filed: November 4, 2014
    Publication date: May 7, 2015
    Inventors: Rajiv Shah, Qingling Yang, Robert C. Mucic, Jenn-Hann Larry Wang