Patents by Inventor Robert C. Wong

Robert C. Wong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240258113
    Abstract: First lithography and etching are carried out on a semiconductor structure to provide a first intermediate semiconductor structure having a first set of surface features corresponding to a first portion of desired fin formation mandrels. Second lithography and etching are carried out on the first intermediate structure, using a second mask, to provide a second intermediate semiconductor structure having a second set of surface features corresponding to a second portion of the mandrels. The second set of surface features are unequally spaced from the first set of surface features and/or the features have different pitch. The fin formation mandrels are formed in the second intermediate semiconductor structure using the first and second sets of surface features; spacer material is deposited over the mandrels and is etched back to form a third intermediate semiconductor structure having a fin pattern. Etching is carried out on same to produce the fin pattern.
    Type: Application
    Filed: March 21, 2024
    Publication date: August 1, 2024
    Inventors: Fee Li Lie, Dongbing Shao, Robert C. Wong, Yongan Xu
  • Patent number: 11978639
    Abstract: First lithography and etching are carried out on a semiconductor structure to provide a first intermediate semiconductor structure having a first set of surface features corresponding to a first portion of desired fin formation mandrels. Second lithography and etching are carried out on the first intermediate structure, using a second mask, to provide a second intermediate semiconductor structure having a second set of surface features corresponding to a second portion of the mandrels. The second set of surface features are unequally spaced from the first set of surface features and/or the features have different pitch. The fin formation mandrels are formed in the second intermediate semiconductor structure using the first and second sets of surface features; spacer material is deposited over the mandrels and is etched back to form a third intermediate semiconductor structure having a fin pattern. Etching is carried out on same to produce the fin pattern.
    Type: Grant
    Filed: May 23, 2023
    Date of Patent: May 7, 2024
    Assignee: Tessera LLC
    Inventors: Fee Li Lie, Dongbing Shao, Robert C. Wong, Yongan Xu
  • Publication number: 20240079247
    Abstract: First lithography and etching are carried out on a semiconductor structure to provide a first intermediate semiconductor structure having a first set of surface features corresponding to a first portion of desired fin formation mandrels. Second lithography and etching are carried out on the first intermediate structure, using a second mask, to provide a second intermediate semiconductor structure having a second set of surface features corresponding to a second portion of the mandrels. The second set of surface features are unequally spaced from the first set of surface features and/or the features have different pitch. The fin formation mandrels are formed in the second intermediate semiconductor structure using the first and second sets of surface features; spacer material is deposited over the mandrels and is etched back to form a third intermediate semiconductor structure having a fin pattern. Etching is carried out on same to produce the fin pattern.
    Type: Application
    Filed: May 23, 2023
    Publication date: March 7, 2024
    Inventors: Fee Li Lie, Dongbing Shao, Robert C. Wong, Yongan Xu
  • Patent number: 11699591
    Abstract: First lithography and etching are carried out on a semiconductor structure to provide a first intermediate semiconductor structure having a first set of surface features corresponding to a first portion of desired fin formation mandrels. Second lithography and etching are carried out on the first intermediate structure, using a second mask, to provide a second intermediate semiconductor structure having a second set of surface features corresponding to a second portion of the mandrels. The second set of surface features are unequally spaced from the first set of surface features and/or the features have different pitch. The fin formation mandrels are formed in the second intermediate semiconductor structure using the first and second sets of surface features; spacer material is deposited over the mandrels and is etched back to form a third intermediate semiconductor structure having a fin pattern. Etching is carried out on same to produce the fin pattern.
    Type: Grant
    Filed: June 28, 2021
    Date of Patent: July 11, 2023
    Assignee: Tessera LLC
    Inventors: Fee Li Lie, Dongbing Shao, Robert C. Wong, Yongan Xu
  • Publication number: 20210343536
    Abstract: First lithography and etching are carried out on a semiconductor structure to provide a first intermediate semiconductor structure having a first set of surface features corresponding to a first portion of desired fin formation mandrels. Second lithography and etching are carried out on the first intermediate structure, using a second mask, to provide a second intermediate semiconductor structure having a second set of surface features corresponding to a second portion of the mandrels. The second set of surface features are unequally spaced from the first set of surface features and/or the features have different pitch. The fin formation mandrels are formed in the second intermediate semiconductor structure using the first and second sets of surface features; spacer material is deposited over the mandrels and is etched back to form a third intermediate semiconductor structure having a fin pattern. Etching is carried out on same to produce the fin pattern.
    Type: Application
    Filed: June 28, 2021
    Publication date: November 4, 2021
    Inventors: Fee Li Lie, Dongbing Shao, Robert C. Wong, Yongan Xu
  • Patent number: 10910041
    Abstract: An SRAM cell with dynamic split ground (GND) and split wordline (WL) for extreme scaling is disclosed. The memory cell includes a first access transistor enabled by a first wordline to control access to cross coupled inverters by a first bitline. The memory cell further includes a second access transistor enabled by a second wordline to control access to the cross coupled inverters by a second bitline. The memory cell further includes a split ground line comprising a first ground line (GNDL) separated from a second ground line (GNDR). The GNDL is connected to a transistor of a first inverter of the cross coupled inverters and the GNDR is connected to a first transistor of a second inverter of the cross coupled inverters.
    Type: Grant
    Filed: May 21, 2019
    Date of Patent: February 2, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventor: Robert C. Wong
  • Patent number: 10804148
    Abstract: Embodiments are directed to a semiconductor device. The semiconductor device includes a first semiconductor fin formed opposite a surface of a first active region of a substrate. The semiconductor device further includes a second semiconductor fin formed opposite a surface of a second active region of the substrate. The semiconductor device further includes a self-aligned buried contact formed over portions of the first active region and the second active region and between the first semiconductor fin and the second semiconductor fin.
    Type: Grant
    Filed: August 25, 2017
    Date of Patent: October 13, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Su Chen Fan, Jeffrey C. Shearer, Robert C. Wong, Ruilong Xie
  • Patent number: 10796957
    Abstract: Embodiments are directed to a semiconductor device. The semiconductor device includes a first semiconductor fin formed opposite a surface of a first active region of a substrate. The semiconductor device further includes a second semiconductor fin formed opposite a surface of a second active region of the substrate. The semiconductor device further includes a self-aligned buried contact formed over portions of the first active region and the second active region and between the first semiconductor fin and the second semiconductor fin.
    Type: Grant
    Filed: November 16, 2017
    Date of Patent: October 6, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Su Chen Fan, Jeffrey C. Shearer, Robert C. Wong, Ruilong Xie
  • Patent number: 10755773
    Abstract: An SRAM cell with dynamic split ground (GND) and split wordline (WL) for extreme scaling is disclosed. The memory cell includes a first access transistor enabled by a first wordline to control access to cross coupled inverters by a first bitline. The memory cell further includes a second access transistor enabled by a second wordline to control access to the cross coupled inverters by a second bitline. The memory cell further includes a split ground line comprising a first ground line (GNDL) separated from a second ground line (GNDR). The GNDL is connected to a transistor of a first inverter of the cross coupled inverters and the GNDR is connected to a first transistor of a second inverter of the cross coupled inverters.
    Type: Grant
    Filed: October 28, 2019
    Date of Patent: August 25, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventor: Robert C. Wong
  • Patent number: 10699775
    Abstract: An SRAM cell with dynamic split ground (GND) and split wordline (WL) for extreme scaling is disclosed. The memory cell includes a first access transistor enabled by a first wordline to control access to cross coupled inverters by a first bitline. The memory cell further includes a second access transistor enabled by a second wordline to control access to the cross coupled inverters by a second bitline. The memory cell further includes a split ground line comprising a first ground line (GNDL) separated from a second ground line (GNDR). The GNDL is connected to a transistor of a first inverter of the cross coupled inverters and the GNDR is connected to a first transistor of a second inverter of the cross coupled inverters.
    Type: Grant
    Filed: October 31, 2017
    Date of Patent: June 30, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventor: Robert C. Wong
  • Patent number: 10629258
    Abstract: An SRAM cell with dynamic split ground (GND) and split wordline (WL) for extreme scaling is disclosed. The memory cell includes a first access transistor enabled by a first wordline to control access to cross coupled inverters by a first bitline. The memory cell further includes a second access transistor enabled by a second wordline to control access to the cross coupled inverters by a second bitline. The memory cell further includes a split ground line comprising a first ground line (GNDL) separated from a second ground line (GNDR). The GNDL is connected to a transistor of a first inverter of the cross coupled inverters and the GNDR is connected to a first transistor of a second inverter of the cross coupled inverters.
    Type: Grant
    Filed: June 18, 2019
    Date of Patent: April 21, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventor: Robert C. Wong
  • Publication number: 20200066334
    Abstract: An SRAM cell with dynamic split ground (GND) and split wordline (WL) for extreme scaling is disclosed. The memory cell includes a first access transistor enabled by a first wordline to control access to cross coupled inverters by a first bitline. The memory cell further includes a second access transistor enabled by a second wordline to control access to the cross coupled inverters by a second bitline. The memory cell further includes a split ground line comprising a first ground line (GNDL) separated from a second ground line (GNDR). The GNDL is connected to a transistor of a first inverter of the cross coupled inverters and the GNDR is connected to a first transistor of a second inverter of the cross coupled inverters.
    Type: Application
    Filed: October 28, 2019
    Publication date: February 27, 2020
    Inventor: Robert C. WONG
  • Publication number: 20190304537
    Abstract: An SRAM cell with dynamic split ground (GND) and split wordline (WL) for extreme scaling is disclosed. The memory cell includes a first access transistor enabled by a first wordline to control access to cross coupled inverters by a first bitline. The memory cell further includes a second access transistor enabled by a second wordline to control access to the cross coupled inverters by a second bitline. The memory cell further includes a split ground line comprising a first ground line (GNDL) separated from a second ground line (GNDR). The GNDL is connected to a transistor of a first inverter of the cross coupled inverters and the GNDR is connected to a first transistor of a second inverter of the cross coupled inverters.
    Type: Application
    Filed: June 18, 2019
    Publication date: October 3, 2019
    Inventor: Robert C. WONG
  • Publication number: 20190272869
    Abstract: An SRAM cell with dynamic split ground (GND) and split wordline (WL) for extreme scaling is disclosed. The memory cell includes a first access transistor enabled by a first wordline to control access to cross coupled inverters by a first bitline. The memory cell further includes a second access transistor enabled by a second wordline to control access to the cross coupled inverters by a second bitline. The memory cell further includes a split ground line comprising a first ground line (GNDL) separated from a second ground line (GNDR). The GNDL is connected to a transistor of a first inverter of the cross coupled inverters and the GNDR is connected to a first transistor of a second inverter of the cross coupled inverters.
    Type: Application
    Filed: May 21, 2019
    Publication date: September 5, 2019
    Inventor: Robert C. WONG
  • Patent number: 10366746
    Abstract: An SRAM cell with dynamic split ground (GND) and split wordline (WL) for extreme scaling is disclosed. The memory cell includes a first access transistor enabled by a first wordline to control access to cross coupled inverters by a first bitline. The memory cell further includes a second access transistor enabled by a second wordline to control access to the cross coupled inverters by a second bitline. The memory cell further includes a split ground line comprising a first ground line (GNDL) separated from a second ground line (GNDR). The GNDL is connected to a transistor of a first inverter of the cross coupled inverters and the GNDR is connected to a first transistor of a second inverter of the cross coupled inverters.
    Type: Grant
    Filed: January 30, 2018
    Date of Patent: July 30, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventor: Robert C. Wong
  • Patent number: 10366996
    Abstract: Fabrication method for a semiconductor memory device and structure are provided, which includes: providing at least two mask layers over a pair of fin structures extended above a substrate, wherein a first mask layer of the at least two mask layers is orthogonal to a second mask layer of the at least two mask layers; and patterning the pair of fin structures to define a pass-gate transistor, wherein the first mask layer facilitates removing of a portion of a first fin structure of the pair of fin structures to define a first pass-gate fin portion of the pass-gate transistor, and the second mask layer protects a second fin structure of the pair of fin structures to define a second pass-gate fin portion of the pass-gate transistor.
    Type: Grant
    Filed: September 14, 2017
    Date of Patent: July 30, 2019
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Robert C. Wong, Lei Zhuang, Ananthan Raghunathan
  • Patent number: 10347327
    Abstract: An SRAM cell with dynamic split ground (GND) and split wordline (WL) for extreme scaling is disclosed. The memory cell includes a first access transistor enabled by a first wordline to control access to cross coupled inverters by a first bitline. The memory cell further includes a second access transistor enabled by a second wordline to control access to the cross coupled inverters by a second bitline. The memory cell further includes a split ground line comprising a first ground line (GNDL) separated from a second ground line (GNDR). The GNDL is connected to a transistor of a first inverter of the cross coupled inverters and the GNDR is connected to a first transistor of a second inverter of the cross coupled inverters.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: July 9, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventor: Robert C. Wong
  • Publication number: 20190067101
    Abstract: Embodiments are directed to a semiconductor device. The semiconductor device includes a first semiconductor fin formed opposite a surface of a first active region of a substrate. The semiconductor device further includes a second semiconductor fin formed opposite a surface of a second active region of the substrate. The semiconductor device further includes a self-aligned buried contact formed over portions of the first active region and the second active region and between the first semiconductor fin and the second semiconductor fin.
    Type: Application
    Filed: November 16, 2017
    Publication date: February 28, 2019
    Inventors: Su Chen Fan, Jeffrey C. Shearer, Robert C. Wong, Ruilong Xie
  • Publication number: 20190067100
    Abstract: Embodiments are directed to a semiconductor device. The semiconductor device includes a first semiconductor fin formed opposite a surface of a first active region of a substrate. The semiconductor device further includes a second semiconductor fin formed opposite a surface of a second active region of the substrate. The semiconductor device further includes a self-aligned buried contact formed over portions of the first active region and the second active region and between the first semiconductor fin and the second semiconductor fin.
    Type: Application
    Filed: August 25, 2017
    Publication date: February 28, 2019
    Inventors: Su Chen Fan, Jeffrey C. Shearer, Robert C. Wong, Ruilong Xie
  • Patent number: RE49794
    Abstract: A double sidewall image transfer process for forming FinFET structures having a fin pitch of less than 40 nm generates paired fins with a spacing determined by the width of a sidewall spacer that forms a second mandrel. Here, the fin pairs are created at two different spacings without requiring the minimum space for the standard sidewall structure. An enlarged space between paired fins is created by placing two first mandrel shapes close enough so as to overlap or merge two sidewall spacer shapes so as to form a wider second mandrel upon further processing. The fin pair created from the wider second mandrel is spaced at about 2 times the fin pair created from the narrower second mandrel. For some circuits, such as an SRAM bitcell, the wider second mandrel can be utilized to form an inactive fin not utilized in the circuit structure, which can be removed. In some embodiments, all dummy inactive fins are eliminated for a simpler process.
    Type: Grant
    Filed: October 8, 2020
    Date of Patent: January 9, 2024
    Assignee: Adeia Semiconductor Solutions LLC
    Inventors: Mary E. Weybright, Robert C. Wong