Patents by Inventor Robert Callan

Robert Callan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10541803
    Abstract: Aspects of the disclosed technology provide a method comprising executing different first and second instructions a first and second number of times, respectively, in repeated alternations. The method further comprises measuring spectra of signals emanating as a result of the processor executing the first and second instructions. The method also includes analyzing data indicative of the spectra of the signals to determine side-channel candidate side-band pairs that each have a lower and upper sideband at first and second frequencies, respectively, that are separated by approximately twice the respective alternation frequency. Finally, the method includes identifying a side-channel carrier frequency at a frequency approximately at a midpoint between a side-channel candidate side-band pair's first and second frequency.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: January 21, 2020
    Assignee: Georgia Tech Research Corporation
    Inventors: Milos Prvulovic, Nina Basta, Robert Callan, Alenka Zajic
  • Patent number: 10330816
    Abstract: Systems and methods are provided for investigating a downhole formation using a nuclear magnetic resonance (NMR) tool. While the tool is moving through the borehole, the formation is magnetized and resulting signals are obtained. In accordance with the present approach, the acquired signals can be resolved azimuthally and/or laterally and can be reconstructed to obtain an indication of a parameter of the formation at multiple locations along the length of the borehole.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: June 25, 2019
    Inventors: Jeffrey L. Paulsen, Yi-Qiao Song, Lalitha Venkataramanan, Robert Callan
  • Publication number: 20180323959
    Abstract: Aspects of the disclosed technology provide a method comprising executing different first and second instructions a first and second number of times, respectively, in repeated alternations. The method further comprises measuring spectra of signals emanating as a result of the processor executing the first and second instructions. The method also includes analyzing data indicative of the spectra of the signals to determine side-channel candidate side-band pairs that each have a lower and upper sideband at first and second frequencies, respectively, that are separated by approximately twice the respective alternation frequency. Finally, the method includes identifying a side-channel carrier frequency at a frequency approximately at a midpoint between a side-channel candidate side-band pair's first and second frequency.
    Type: Application
    Filed: June 29, 2018
    Publication date: November 8, 2018
    Inventors: Milos Prvulovic, Nina Basta, Robert Callan, Alenka Zajic
  • Patent number: 10114142
    Abstract: Systems and methods are provided for investigating a downhole formation using a nuclear magnetic resonance (NMR) tool having two or more radio frequency receiving coils. While the tool is moving through the borehole, the formation is magnetized and resulting signals are obtained. In accordance with the present approach, the acquired signals can be resolved azimuthally and can be reconstructed to obtain an indication of a parameter of the formation at multiple locations along the length of the borehole.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: October 30, 2018
    Inventors: Lalitha Venkataramanan, Robert Callan, Lukasz Zielinski, Martin Hurlimann, Timothy Andrew John Hopper
  • Patent number: 10015006
    Abstract: Aspects of the disclosed technology provide a method comprising executing, at a first processor and over a predetermined time period, first and second instructions in repeated alternations, wherein each alternation comprises executing the first instruction a predetermined number of times followed by executing the second instruction the predetermined number of times. Further, the method comprises measuring, via a measuring apparatus, a side-channel signal that results from the first processor executing the first and second instructions in repeated alternations. Additionally, the method comprises filtering, by a second processor, a spectral component of the measured side-channel signal, and analyzing, by the second processor, the filtered spectral component of the measured side-channel signal to determine power spectral density within a frequency range of the filtered spectral component.
    Type: Grant
    Filed: November 5, 2015
    Date of Patent: July 3, 2018
    Assignee: Georgia Tech Research Corporation
    Inventors: Milos Prvulovic, Nina Basta, Robert Callan, Alenka Zajic
  • Patent number: 9747421
    Abstract: A medical imaging decision support system is provided that can conduct, and help medical professionals conduct multi-factor brain analysis. Data for disparate processing modes (for example, EEG, MRI, etc.) can be input to the system, processed in parallel in a cloud environment, and the results can be rendered in a thin client (for example, browser) for a user's rapid multi-modal evaluation of a brain.
    Type: Grant
    Filed: February 9, 2015
    Date of Patent: August 29, 2017
    Assignee: Picofemto LLC
    Inventors: Srikant Krishna, Fatih Sirin, Dhinakaran Chinappen, Robert Callan, William C. Bubel, Brian Kennedy
  • Publication number: 20170176628
    Abstract: Systems and methods are provided for investigating a downhole formation using a nuclear magnetic resonance (NMR) tool. While the tool is moving through the borehole, the formation is magnetized and resulting signals are obtained. In accordance with the present approach, the acquired signals can be resolved azimuthally and/or laterally and can be reconstructed to obtain an indication of a parameter of the formation at multiple locations along the length of the borehole.
    Type: Application
    Filed: December 18, 2015
    Publication date: June 22, 2017
    Inventors: Jeffrey L. Paulsen, Yi-Qiao Song, Lalitha Venkataramanan, Robert Callan
  • Publication number: 20170176627
    Abstract: Systems and methods are provided for investigating a downhole formation using a nuclear magnetic resonance (NMR) tool having two or more radio frequency receiving coils. While the tool is moving through the borehole, the formation is magnetized and resulting signals are obtained. In accordance with the present approach, the acquired signals can be resolved azimuthally and can be reconstructed to obtain an indication of a parameter of the formation at multiple locations along the length of the borehole.
    Type: Application
    Filed: December 18, 2015
    Publication date: June 22, 2017
    Inventors: Lalitha Venkataramanan, Robert Callan, Lukasz Zielinski, Martin Hurlimann, Timothy Andrew John Hopper
  • Publication number: 20160127124
    Abstract: Aspects of the disclosed technology provide a method comprising executing, at a first processor and over a predetermined time period, first and second instructions in repeated alternations, wherein each alternation comprises executing the first instruction a predetermined number of times followed by executing the second instruction the predetermined number of times. Further, the method comprises measuring, via a measuring apparatus, a side-channel signal that results from the first processor executing the first and second instructions in repeated alternations. Additionally, the method comprises filtering, by a second processor, a spectral component of the measured side-channel signal, and analyzing, by the second processor, the filtered spectral component of the measured side-channel signal to determine power spectral density within a frequency range of the filtered spectral component.
    Type: Application
    Filed: November 5, 2015
    Publication date: May 5, 2016
    Inventors: Milos Prvulovic, Nina Basta, Robert Callan, Alenka Zajic
  • Publication number: 20150227702
    Abstract: A medical imaging decision support system is provided that can conduct, and help medical professionals conduct multi-factor brain analysis. Data for disparate processing modes (for example, EEG, MRI, etc.) can be input to the system, processed in parallel in a cloud environment, and the results can be rendered in a thin client (for example, browser) for a user's rapid multi-modal evaluation of a brain.
    Type: Application
    Filed: February 9, 2015
    Publication date: August 13, 2015
    Inventors: Srikant Krishna, Fatih Sirin, Dhinakaran Chinappen, Robert Callan, William C. Bubel, Brian Kennedy