Patents by Inventor Robert Cumberland

Robert Cumberland has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9933213
    Abstract: A method of forming a three-dimensional (3D) composite structure includes: securing a mask between a collimated light source and a volume of a photo-monomer; directing a collimated light beam from the collimated light source to the mask for a period of exposure time such that a portion of the collimated light beam passes through the mask and is guided by a plurality of apertures into the photo-monomer to form a plurality of waveguides through a portion of the volume of the photo-monomer; removing any uncured photo-monomer to leave behind a three-dimensional ordered open-cellular microstructure to define an open volume and a structure of a first continuous material of the three-dimensional composite material; and placing a second continuous material in the open volume, wherein the second continuous material and the first continuous material share an interface between each other, and wherein the interface is everywhere continuous.
    Type: Grant
    Filed: June 6, 2012
    Date of Patent: April 3, 2018
    Assignee: HRL Laboratories, LLC
    Inventors: Alan J. Jacobsen, William B. Barvosa-Carter, Adam F. Gross, Robert Cumberland, Kevin W. Kirby, David Kisailus
  • Patent number: 8679582
    Abstract: Tunable variable emissivity materials, methods for fabricating tunable variable emissivity materials, and methods for controlling the temperature of a spacecraft using tunable variable emissivity materials have been provided. In an exemplary embodiment, a variable emissivity material has the formula M1(1?(x+y))M2xM3yMnO3, wherein M1 comprises lanthanum, praseodymium, scandium, yttrium, neodymium or samarium, M2 comprises an alkali earth metal, M3 comprises an alkali earth metal that is not M2, and x, y, and (x+y) are less than 1. The material has a critical temperature (Tc) in the range of about 270 to about 320K and a transition width is less than about 30K.
    Type: Grant
    Filed: February 15, 2010
    Date of Patent: March 25, 2014
    Assignee: The Boeing Company
    Inventors: Robert Cumberland, William B. Barvose-Carter, Adam F. Gross
  • Patent number: 8435438
    Abstract: An ordered ceramic microstructure and a method of making the same. In one embodiment, the ceramic microstructure includes a base structure and one or more ceramic layers. The base structure includes a plurality of first truss elements defined by a plurality of first self-propagating polymer waveguides and extending along a first direction, a plurality of second truss elements defined by a plurality of second self-propagating polymer waveguides and extending along a second direction, and a plurality of third truss elements defined by a plurality of third self-propagating polymer waveguides and extending along a third direction. Here, the first, second, and third truss elements interpenetrate each other at a plurality of nodes to form a continuous material, and the base structure is self-supporting. In addition, the ceramic layers coat a surface of at least one truss element of the first truss elements, the second truss elements, or the third truss elements.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: May 7, 2013
    Assignee: HRL Laboratories, LLC
    Inventors: Adam F. Gross, Alan J. Jacobsen, Robert Cumberland
  • Patent number: 8320727
    Abstract: A three-dimensional (3D) composite structure and a method of making the same. In one embodiment, the 3D composite structure includes a 3D ordered microstructure and a second continuous material. The 3D ordered microstructure includes first truss elements defined by first self-propagating polymer waveguides and extending along a first direction, second truss elements defined by second self-propagating polymer waveguides and extending along a second direction, and third truss elements defined by third self-propagating polymer waveguides and extending along a third direction. The first, second, and third truss elements interpenetrate each other at nodes to form a first continuous material with the three-dimensional ordered microstructure. In addition, the second continuous material has different physical properties than the first continuous material and shares an interface with the three-dimensional ordered microstructure, and wherein the interface is everywhere continuous.
    Type: Grant
    Filed: January 11, 2008
    Date of Patent: November 27, 2012
    Assignee: HRL Laboratories, LLC
    Inventors: Alan J. Jacobsen, William B. Barvosa-Carter, Adam F. Gross, Robert Cumberland, Kevin W. Kirby, David Kisailus
  • Patent number: 7938989
    Abstract: A composite structure for storing thermal energy. In one embodiment, an apparatus for storing thermal energy includes: a thermal storage material and a three-dimensional structure. The three-dimensional structure includes: a plurality of first truss elements defined by a plurality of first self-propagating polymer waveguides and extending along a first direction; a plurality of second truss elements defined by a plurality of second self-propagating polymer waveguides and extending along a second direction; and a plurality of third truss elements defined by a plurality of third self-propagating polymer waveguides and extending along a third direction. The first, second, and third truss elements interpenetrate each other at a plurality of nodes to form a continuous material. The first, second, and third truss elements define an open space. The thermal storage material occupies at least a portion of the open space, and the three-dimensional structure is self-supporting.
    Type: Grant
    Filed: October 20, 2009
    Date of Patent: May 10, 2011
    Assignee: HRL Laboratories, LLC
    Inventors: Adam F. Gross, Ronald M. Finnila, Alan J. Jacobsen, Robert Cumberland, Sky L. Skeith
  • Publication number: 20110039035
    Abstract: Tunable variable emissivity materials, methods for fabricating tunable variable emissivity materials, and methods for controlling the temperature of a spacecraft using tunable variable emissivity materials have been provided. In an exemplary embodiment, a variable emissivity material has the formula M1(1?(x+y))M2xM3yMnO3, wherein M1 comprises lanthanum, praseodymium, scandium, yttrium, neodymium or samarium, M2 comprises an alkali earth metal, M3 comprises an alkali earth metal that is not M2, and x, y, and (x+y) are less than 1. The material has a critical temperature (Tc) in the range of about 270 to about 320K and a transition width is less than about 30K.
    Type: Application
    Filed: February 15, 2010
    Publication date: February 17, 2011
    Inventors: Robert Cumberland, William B. Barvose-Carter, Adam F. Gross
  • Patent number: 7718227
    Abstract: Flexible thermal control coatings for use on components of spacecraft and methods for fabricating such coatings are provided. In an exemplary embodiment, a flexible thermal control coating comprises a flexible organic binder for disposition on the component and an inorganic material having a radiation absorptance (?) of less than about 0.2 and an emissivity (?) of at least about 0.6. The inorganic material and the organic binder are oriented relative to each other so that an exterior surface of the coating has a higher concentration of inorganic material than an interior surface of the coating and a lower concentration of organic binder than the interior surface.
    Type: Grant
    Filed: August 16, 2006
    Date of Patent: May 18, 2010
    Assignee: The Boeing Company
    Inventors: Robert Cumberland, William B. Barvosa-Carter, Adam F. Gross
  • Patent number: 7691284
    Abstract: Tunable variable emissivity materials, methods for fabricating tunable variable emissivity materials, and methods for controlling the temperature of a spacecraft using tunable variable emissivity materials have been provided. In an exemplary embodiment, a variable emissivity material has the formula M1(1?(x+y))M2xM3yMnO3, wherein M1 comprises lanthanum, praseodymium, scandium, yttrium, neodymium or samarium, M2 comprises an alkali earth metal, M3 comprises an alkali earth metal that is not M2, and x, y, and (x+y) are less than 1. The material has a critical temperature (Tc) in the range of about 270 to about 320K and a transition width is less than about 30K.
    Type: Grant
    Filed: August 29, 2006
    Date of Patent: April 6, 2010
    Assignee: The Boeing Company
    Inventors: Robert Cumberland, William B. Barvose Carter, Adam F. Gross
  • Patent number: 7687132
    Abstract: An ordered ceramic microstructure and a method of making the same. In one embodiment, the ceramic microstructure includes a base structure and one or more ceramic layers. The base structure includes a plurality of first truss elements defined by a plurality of first self-propagating polymer waveguides and extending along a first direction, a plurality of second truss elements defined by a plurality of second self-propagating polymer waveguides and extending along a second direction, and a plurality of third truss elements defined by a plurality of third self-propagating polymer waveguides and extending along a third direction. Here, the first, second, and third truss elements interpenetrate each other at a plurality of nodes to form a continuous material, and the base structure is self-supporting. In addition, the ceramic layers coat a surface of at least one truss element of the first truss elements, the second truss elements, or the third truss elements.
    Type: Grant
    Filed: March 5, 2008
    Date of Patent: March 30, 2010
    Assignee: HRL Laboratories, LLC
    Inventors: Adam F. Gross, Alan J. Jacobsen, Robert Cumberland
  • Patent number: 7653276
    Abstract: A composite structure for storing thermal energy. In one embodiment, an apparatus for storing thermal energy includes: a thermal storage material and a three-dimensional structure. The three-dimensional structure includes: a plurality of first truss elements defined by a plurality of first self-propagating polymer waveguides and extending along a first direction; a plurality of second truss elements defined by a plurality of second self-propagating polymer waveguides and extending along a second direction; and a plurality of third truss elements defined by a plurality of third self-propagating polymer waveguides and extending along a third direction. The first, second, and third truss elements interpenetrate each other at a plurality of nodes to form a continuous material. The first, second, and third truss elements define an open space. The thermal storage material occupies at least a portion of the open space, and the three-dimensional structure is self-supporting.
    Type: Grant
    Filed: March 6, 2008
    Date of Patent: January 26, 2010
    Assignee: HRL Laboratories, LLC
    Inventors: Adam F. Gross, Ronald M. Finnila, Alan J. Jacobsen, Robert Cumberland, Sky L. Skeith
  • Publication number: 20080057204
    Abstract: Tunable variable emissivity materials, methods for fabricating tunable variable emissivity materials, and methods for controlling the temperature of a spacecraft using tunable variable emissivity materials have been provided. In an exemplary embodiment, a variable emissivity material has the formula M1(1?(x+y))M2xM3yMnO3, wherein M1 comprises lanthanum, praseodymium, scandium, yttrium, neodymium or samarium, M2 comprises an alkali earth metal, M3 comprises an alkali earth metal that is not M2, and x, y, and (x+y) are less than 1. The material has a critical temperature (Tc) in the range of about 270 to about 320 K and a transition width is less than about 30 K.
    Type: Application
    Filed: August 29, 2006
    Publication date: March 6, 2008
    Inventors: Robert Cumberland, William B. Barvose Carter, Adam F. Gross
  • Publication number: 20080045639
    Abstract: Flexible thermal control coatings for use on components of spacecraft and methods for fabricating such coatings are provided. In an exemplary embodiment, a flexible thermal control coating comprises a flexible organic binder for disposition on the component and an inorganic material having a radiation absorptance (?) of less than about 0.2 and an emissivity (?) of at least about 0.6. The inorganic material and the organic binder are oriented relative to each other so that an exterior surface of the coating has a higher concentration of inorganic material than an interior surface of the coating and a lower concentration of organic binder than the interior surface.
    Type: Application
    Filed: August 16, 2006
    Publication date: February 21, 2008
    Inventors: Robert Cumberland, William B. Barvosa-Carter, Adam F. Gross