Patents by Inventor Robert D. Fleischmann

Robert D. Fleischmann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8110659
    Abstract: The present inventors have discovered novel receptors in the Tumor Necrosis Factor (TNF) receptor family. In particular, receptors having homology to the type 2 TNF receptor (TNF-RII) are provided. Isolated nucleic acid molecules are also provided encoding the novel receptors of the present invention. Receptor polypeptides are further provided as are vectors, host cells and recombinant methods for producing the same.
    Type: Grant
    Filed: September 18, 1996
    Date of Patent: February 7, 2012
    Assignee: Human Genome Sciences, Inc.
    Inventors: John M. Greene, Robert D. Fleischmann, Jian Ni
  • Patent number: 7094564
    Abstract: A human TNF receptor and DNA (RNA) encoding such receptor and a procedure for producing such receptor by recombinant techniques is disclosed. Also disclosed are methods for utilizing such receptor for screening for antagonists and agonists to the receptor and for ligands for the receptor. Also disclosed are methods for utilizing such agonists to inhibit the growth of tumors, to stimulate cellular differentiation, to mediate the immune response and anti-viral response, to regulate growth and provide resistance to certain infections. The use of the antagonists as a therapeutic to treat autoimmune diseases, inflammation, septic shock, to inhibit graft-host reactions, and to prevent apoptosis is also disclosed. Also disclosed are diagnostic methods for detecting mutations in the nucleic acid sequence encoding the receptor and for detecting altered levels of the soluble receptor in a sample derived from a host.
    Type: Grant
    Filed: June 6, 1995
    Date of Patent: August 22, 2006
    Assignee: Human Genome Sciences, Inc.
    Inventors: John Greene, Robert D. Fleischmann
  • Patent number: 7078493
    Abstract: The present inventors have discovered novel receptors in the Tumor Necrosis Factor (TNF) receptor family. In particular, receptors having homology to the type 2 TNF receptor (TNF-RII) are provided. Isolated nucleic acid molecules are also provided encoding the novel receptors of the present invention. Receptor polypeptides are further provided as are vectors, host cells and recombinant methods for producing the same.
    Type: Grant
    Filed: March 15, 2000
    Date of Patent: July 18, 2006
    Assignee: Human Genome Sciences, Inc.
    Inventors: John M. Greene, Robert D. Fleischmann, Jian Ni
  • Patent number: 6955885
    Abstract: A human stanniocalcin-alpha polypeptide and DNA (RNA) encoding such polypeptide and a procedure for producing such polypeptide by recombinant techniques is disclosed. Also disclosed are methods for utilizing such polypeptide for the regulation of electrolyte imbalances which can lead to renal, bone and heart diseases and osteoporosis and Paget's Disease. Antagonists against such polypeptides and their use in the regulation of electrolyte imbalances which can lead to hypocalcemia and osteoporosis are also disclosed. Use of the stanniocalcin-alpha sequence as a diagnostic to detect diseases or the susceptibility to diseases related to a mutated form of stanniocalcin-alpha sequences is also disclosed.
    Type: Grant
    Filed: April 18, 2003
    Date of Patent: October 18, 2005
    Assignee: Human Genome Sciences, Inc.
    Inventors: Henrik S. Olsen, Robert D. Fleischmann
  • Patent number: 6846651
    Abstract: The present invention provides the sequencing of the entire genome of Haemophilus influenzae Rd, SEQ ID NO:1. The present invention further provides the sequence information stored on computer readable media, and computer-based systems and methods which facilitate its use. In addition to the entire genomic sequence, the present invention identifies over 1700 protein encoding fragments of the genome and identifies, by position relative to a unique Not I restriction endonuclease site, any regulatory elements which modulate the expression of the protein encoding fragments of the Haemophilus genome.
    Type: Grant
    Filed: June 3, 2002
    Date of Patent: January 25, 2005
    Assignees: Human Genome Sciences, Inc., Johns Hopkins University
    Inventors: Robert D. Fleischmann, Mark D. Adams, Owen White, Hamilton O. Smith, J. Craig Venter
  • Publication number: 20040203093
    Abstract: The present invention provides the sequencing of the entire genome of Haemophilus influenzae Rd, SEQ ID NO:1. The present invention further provides the sequence information stored on computer readable media, and computer-based systems and methods which facilitate its use. In addition to the entire genomic sequence, the present invention identifies over 1700 protein encoding fragments of the genome and identifies, by position relative to a unique Not I restriction endonuclease site, any regulatory elements which modulate the expression of the protein encoding fragments of the Haemophilus genome.
    Type: Application
    Filed: June 3, 2002
    Publication date: October 14, 2004
    Applicants: Human Genome Sciences, Inc., Johns Hopkins University
    Inventors: Robert D. Fleischmann, Mark D. Adams, Owen White, Hamilton O. Smith, J. Craig Venter
  • Publication number: 20030181663
    Abstract: A human stanniocalcin-alpha polypeptide and DNA (RNA) encoding such polypeptide and a procedure for producing such polypeptide by recombinant techniques is disclosed. Also disclosed are methods for utilizing such polypeptide for the regulation of electrolyte imbalances which can lead to renal, bone and heart diseases and osteoporosis and Paget's Disease. Antagonists against such polypeptides and their use in the regulation of electrolyte imbalances which can lead to hypocalcemia and osteoporosis are also disclosed. Use of the stanniocalcin-alpha sequence as a diagnostic to detect diseases or the susceptibility to diseases related to a mutated form of stanniocalcin-alpha sequences is also disclosed.
    Type: Application
    Filed: April 18, 2003
    Publication date: September 25, 2003
    Applicant: Human Genome Sciences, Inc.
    Inventors: Henrik S. Olsen, Robert D. Fleischmann
  • Patent number: 6620619
    Abstract: The present invention discloses three human DNA repair proteins and DNA (RNA) encoding such proteins. The DNA repair proteins may be produced by recombinant DNA techniques. One of the human DNA repair proteins, hmlh1, has been mapped on chromosome 3. The polynucleotide sequences of DNA repair proteins may be used for diagnosis of a hereditary susceptibility to cancer.
    Type: Grant
    Filed: March 16, 1994
    Date of Patent: September 16, 2003
    Assignee: Human Genome Sciences, Inc.
    Inventors: William A. Haseltine, Steven Ruben, Ying-Fei Wei, Mark D. Adams, Robert D. Fleischmann, Claire M. Fraser, Craig A. Rosen, Rebecca A. Fuldner, Ewen F. Kirkness
  • Publication number: 20030166097
    Abstract: A human TNF receptor and DNA (RNA) encoding such receptor and a procedure for producing such receptor by recombinant techniques is disclosed. Also disclosed are methods for utilizing such receptor for screening for antagonists and agonists to the receptor and for ligands for the receptor. Also disclosed are methods for utilizing such agonists to inhibit the growth of tumors, to stimulate cellular differentiation, to mediate the immune response and anti-viral response, to regulate growth and provide resistance to certain infections. The use of the antagonists as a therapeutic to treat autoimmune diseases, inflammation, septic shock, to inhibit graft-host reactions, and to prevent apoptosis is also disclosed. Also disclosed are diagnostic methods for detecting mutations in the nucleic acid sequence encoding the receptor and for detecting altered levels of the soluble receptor in a sample derived from a host.
    Type: Application
    Filed: May 28, 2002
    Publication date: September 4, 2003
    Applicant: Human Genome Sciences, Inc.
    Inventors: John M. Greene, Robert D. Fleischmann
  • Patent number: 6613877
    Abstract: A human stanniocalcin-alpha polypeptide and DNA (RNA) encoding such polypeptide and a procedure for producing such polypeptide by recombinant techniques is disclosed. Also disclosed are methods for utilizing such polypeptide for the regulation of electrolyte imbalances which can lead to renal, bone and heart diseases and osteoporosis and Paget's Disease. Antagonists against such polypeptides and their use in the regulation of electrolyte imbalances which can lead to hypocalcemia and osteoporosis are also disclosed.
    Type: Grant
    Filed: July 28, 1999
    Date of Patent: September 2, 2003
    Assignee: Human Genome Sciences, Inc.
    Inventors: Henrick S. Olsen, Robert D. Fleischmann
  • Patent number: 6610477
    Abstract: The present invention discloses three human DNA repair proteins and DNA (RNA) encoding such proteins and a procedure for producing such proteins by recombinant techniques. One of the human DNA repair proteins, hMLH1, has been mapped to chromosome 3 while hMLH2 has been mapped to chromosome 2 and hMLH3 has been mapped to chromosome 7. The polynucleotide sequences of the DNA repair proteins may be used for therapeutic and diagnostic treatments of a hereditary susceptibility to cancer.
    Type: Grant
    Filed: June 6, 1995
    Date of Patent: August 26, 2003
    Assignees: Human Genome Sciences, Inc., The Johns Hopkins University
    Inventors: William A. Haseltine, Steven M. Ruben, Ying-Fei Wei, Mark D. Adams, Robert D. Fleischmann, Claire M. Fraser, Rebecca A. Fuldner, Ewen F. Kirkness, Craig A. Rosen, Bert Vogelstein, Kenneth W. Kinzler, Nicholas C. Nicolaides, Nickolas Papadopoulos
  • Publication number: 20030129701
    Abstract: Disclosed is an RAR&egr; polypeptide and DNA (RNA) encoding the polypeptide. Also provided is a procedure for producing such polypeptide by recombinant techniques and utilizing such polypeptide for therapeutic purposes, for example, tissue regeneration and stimulation of the immune and hematopoietic system. Also disclosed are methods of identifying ligands which stimulate the RAR&egr;. Also disclosed are diagnostic methods for detecting a mutation in the RAR&egr; receptor nucleic acid sequences and detecting a level of the soluble form of the receptors in a sample derived from a host.
    Type: Application
    Filed: October 24, 2002
    Publication date: July 10, 2003
    Applicant: Human Genome Sciences, Inc.
    Inventors: Liang Cao, Jian Ni, Robert D. Fleischmann
  • Publication number: 20030087226
    Abstract: The present invention discloses three human DNA repair proteins and DNA (RNA) encoding such proteins. The DNA repair proteins may be produced by recombinant DNA techniques. One of the human DNA repair proteins, hmlh1, has been mapped on chromosome 3. The polynucleotide sequences of DNA repair proteins may be used for diagnosis of a hereditary susceptibility to cancer.
    Type: Application
    Filed: March 16, 1994
    Publication date: May 8, 2003
    Inventors: WILLIAM A. HASELTINE, STEVEN RUBEN, YING-FEI WEI, MARK D. ADAMS, ROBERT D. FLEISCHMANN, CLAIRE M. FRASER, CRAIG A. ROSEN, REBECCA A. FULDNER, EWEN F. KIRKNESS
  • Patent number: 6528289
    Abstract: The present invention provides the sequencing of the entire genome of Haemophilus influenzae Rd, SEQ ID NO:1. The present invention further provides the sequence information stored on computer readable media, and computer-based systems and methods which facilitate its use. In addition to the entire genomic sequence, the present invention identifies over 1700 protein encoding fragments of the genome and identifies, by position relative to a unique Not I restriction endonuclease site, any regulatory elements which modulate the expression of the protein encoding fragments of the Haemophilus genome.
    Type: Grant
    Filed: August 23, 2000
    Date of Patent: March 4, 2003
    Assignees: Human Genome Sciences, Inc., Johns Hopkins University
    Inventors: Robert D. Fleischmann, Mark D. Adams, Owen White, Hamilton O. Smith, J. Craig Venter
  • Publication number: 20030027177
    Abstract: The present invention discloses three human DNA repair proteins and DNA (RNA) encoding such proteins and a prodeudre for producing such proteins by recombinant techniques. One of the human DNA repair proteins, hMLH1, has been mapped to chromosome 3 while hMLH2 has been mapped to chromosome 2 and hMLH3 has been mapped to chromosome 7. The polynucleotide sequences of the DNA repair proteins may be used for therapeutic and diagnostic treatments of a hereditary susceptibility to cancer.
    Type: Application
    Filed: February 22, 2002
    Publication date: February 6, 2003
    Applicant: Human Genome Sciences, Inc.
    Inventors: William A. Haseltine, Steven M. Ruben, Ying-Fei Wei, Mark D. Adams, Robert D. Fleischmann, Claire M. Fraser, Rebecca A. Fuldner, Ewen F. Kirkness, Craig A. Rosen
  • Patent number: 6506581
    Abstract: The present invention provides the sequencing of the entire genome of Haemophilus influenzae Rd, SEQ ID NO:1. The present invention further provides the sequence information stored on computer readable media, and computer-based systems and methods which facilitate its use. In addition to the entire genomic sequence, the present invention identifies over 1700 protein encoding fragments of the genome and identifies, by position relative to a unique Not I restriction endonuclease site, any regulatory elements which modulate the expression of the protein encoding fragments of the Haemophilus genome.
    Type: Grant
    Filed: April 25, 2000
    Date of Patent: January 14, 2003
    Assignees: Human Genome Science, Inc., Johns Hopkins University
    Inventors: Robert D. Fleischmann, Mark D. Adams, Owen White, Hamilton O. Smith, J. Craig Venter
  • Patent number: 6482606
    Abstract: The present invention discloses three human DNA repair proteins and DNA (RNA) encoding such proteins. The DNA repair proteins may be produced by recombinant DNA techniques. One of the human DNA repair proteins, hmlh1, has been mapped on chromosome 3. The polynucleotide sequences of DNA repair proteins may be used for diagnosis of a hereditary susceptibility to cancer.
    Type: Grant
    Filed: January 27, 1994
    Date of Patent: November 19, 2002
    Assignee: Human Genome Sciences, Inc.
    Inventors: Mark D. Adams, Robert D. Fleischmann, Claire M. Fraser, Rebecca A. Fuldner, Ewen F. Kirkness, William A. Haseltine, Craig A. Rosen, Steve Ruben, Ying-Fei Wei
  • Patent number: 6468765
    Abstract: The present invention provides the sequencing of the entire genome of Haemophilus influenzae Rd, SEQ ID NO:1. The present invention further provides the sequence information stored on computer readable media, and computer-based systems and methods which facilitate its use. In addition to the entire genomic sequence, the present invention identifies over 1700 protein encoding fragments of the genome and identifies, by position relative to a unique Not I restriction endonuclease site, any regulatory elements which modulate the expression of the protein encoding fragments of the Haemophilus genome.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: October 22, 2002
    Assignees: Human Genome Sciences, Inc., Johns Hopkins University
    Inventors: Robert D. Fleischmann, Mark D. Adams, Owen White, Hamilton O. Smith, J. Craig Venter
  • Publication number: 20020150989
    Abstract: A human TNF receptor and DNA (RNA) encoding such receptor and a procedure for producing such receptor by recombinant techniques is disclosed. Also disclosed are methods for utilizing such receptor for screening for antagonists and agonists to the receptor and for ligands for the receptor. Also disclosed are methods for utilizing such agonists to inhibit the growth of tumors, to stimulate cellular differentiation, to mediate the immune response and anti-viral response, to regulate growth and provide resistance to certain infections. The use of the antagonists as a therapeutic to treat autoimmune diseases, inflammation, septic shock, to inhibit graft-host reactions, and to prevent apoptosis is also disclosed. Also disclosed are diagnostic methods for detecting mutations in the nucleic acid sequence encoding the receptor and for detecting altered levels of the soluble receptor in a sample derived from a host.
    Type: Application
    Filed: June 10, 2002
    Publication date: October 17, 2002
    Applicant: Human Genome Sciences, Inc.
    Inventors: John M. Greene, Robert D. Fleischmann
  • Publication number: 20020102634
    Abstract: A human stanniocalcin-alpha polypeptide and DNA (RNA) encoding such polypeptide and a procedure for producing such polypeptide by recombinant techniques is disclosed. Also disclosed are methods for utilizing such polypeptide for the treatment of electrolyte disorders which lead to renal, bone and heart diseases and osteoporosis and Paget's Disease. Antagonists against such polypeptides and their use therapeutically to treat hypocalcemia and osteoporosis are also disclosed. Use of the stanniocalcin-alpha sequence as a diagnostic to detect diseases or the susceptibility to diseases related to a mutated form of stanniocalcin-alpha seqeunces is also disclosed.
    Type: Application
    Filed: July 28, 1999
    Publication date: August 1, 2002
    Inventors: HENRIK S. OLSEN, ROBERT D. FLEISCHMANN