Patents by Inventor Robert D. J. Froese

Robert D. J. Froese has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11926685
    Abstract: Ethylene-based polymers of this disclosure include a melt viscosity ratio (V0.1/V100) at 190° C. of at least 10, where V0.1 is the viscosity of the ethylene-based polymer at 190° C. at a shear rate of 0.1 radians/second, and V100 is the viscosity of the ethylene-based polymer at 190° C. at a shear rate of 100 radians/second; and a molecular weight tail quantified by an MWD area metric, ATAIL, and ATAIL is less than or equal to 0.04 as determined by gel permeation chromatography using a triple detector.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: March 12, 2024
    Assignee: Dow Global Technologies LLC
    Inventors: Teresita Kashyap, Robert D. J. Froese, Daniel J. Arriola
  • Patent number: 11912799
    Abstract: Ethylene-based polymers comprise reaction products of polymerizing ethylene monomer, at least one diene or polyene comonomer, and optionally at least one C3 to C14 comonomer under defined polymerization reaction conditions, the ethylene-based polymer having: an Mw/Mw0 greater than 1.20. The Mw0 is the initial weight-average molecular weight of a comparative ethylene-based polymer by gel permeation chromatography. The comparative ethylene-based polymer being a reaction product of polymerizing ethylene monomer and all C3 to C14 comonomers present in the ethylene-based polymer, if any, without the at least one polyene comonomer, under the defined polymerization reaction conditions; and a molecular weight tail quantified by an MWD area metric, ATAIL, and ATAIL is less than or equal to 0.04 as determined by gel permeation chromatography using a triple detector.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: February 27, 2024
    Assignee: Dow Global Technologies LLC
    Inventors: Robert D. J. Froese, Daniel J. Arriola, Teresita Kashyap, Bryan D. Stubbert
  • Publication number: 20230348643
    Abstract: Embodiments of this disclosure are directed to ethylene-based polymers. The ethylene-based polymers are polymerized units derived from ethylene, diene, and optionally one or more C3-C12?-olefins. The ethylene-based polymer includes a melt strength greater than negative 17 times the log base 10 of the melt index plus 25 ((MS)>?17*log (MI)+25). In the equation, MS is the melt strength in cN and MI is the melt index in g/10 min according to ASTM D1238. The ethylene-based polymer also includes an average g? that is greater than 0.70. The average g? is an intrinsic viscosity ratio determined by gel permeation chromatography using a triple detector.
    Type: Application
    Filed: March 26, 2021
    Publication date: November 2, 2023
    Applicant: Dow Global Technologies LLC
    Inventors: Robert D.J. Froese, Keran Lu, Robert L. Sammler, Cornelis F.J. Den Doelder, Teresita Kashyap, Luca Martinetti
  • Publication number: 20230128870
    Abstract: The disclosure are directed to a process for polymerizing ethylene-based polymers. The process includes polymerizing ethylene and optionally one or more (C3-C14)?-olefin monomer, and at least one diene, in the presence of at least one multi-chain catalyst and at least one single-chain catalyst. The process may include a solvent. The multi-chain catalyst in the process includes a plurality of polymerization sites. Long-chain branched polymers are synthesized by connecting the two polymer chains of the multi-chain catalyst with the diene, the joining of the two polymer chains being performed in a concerted manner during the polymerization. The ethylene-based polymers are produced and include at least two molecular weight polymer fractions. The multi-chain catalyst produces the high molecular weight fraction, which is the long-chain branched polymer.
    Type: Application
    Filed: March 26, 2021
    Publication date: April 27, 2023
    Applicant: Dow Global Technologies LLC
    Inventors: Robert D.J. Froese, Keran Lu, Rachel E.M. Brooner, Jianbo Hou, Jerzy Klosin, Daniel J. Arriola
  • Publication number: 20230125442
    Abstract: Embodiments of this disclosure are directed to ethylene-based polymers. The ethylene-based polymer are polymerized units derived from ethylene, diene, and optionally, one or more C3-C12 ?-olefins. The ethylene-based polymer includes a melt viscosity ratio (V0.1/V100) at 190 C greater than 20. The V0.1 is the viscosity of the ethylene-based polymer at 190 C at a frequency of 0.1 radians/second, and the V100 is the viscosity of the ethylene-based polymer at 190 C at a frequency of 100 radians/second. Additionally, the ethylene-based polymer includes an average g greater than 0.86, where the average g? is an intrinsic viscosity ratio determined by gel permeation chromatography using a triple detector.
    Type: Application
    Filed: March 26, 2021
    Publication date: April 27, 2023
    Applicant: Dow Global Technologies LLC
    Inventors: Robert D.J. Froese, Keran Lu, Robert L. Sammler, Cornelis F.J. Den Doelder
  • Publication number: 20230128663
    Abstract: The ethylene-based polymers include a low molecular weight polymer fraction and a high molecular weight polymer fraction, which are divided by Smax on a molecular weight distribution (MWD) curve determined via absolute gel permeation chromatography. The low molecular weight polymer fraction and the high molecular weight polymer fraction include a Ladder character, L, defined for a given absolute molecular weight (MW) as the fit of the log of the intrinsic viscosity [h] versus the log of the absolute MW (M) curve using the expression, log[?]=log(?)+? log(M)?L*? log(2) according to a Mark-Houwink-Sakurada curve, in which log(?) is the intercept and ax is the slope. The low molecular weight polymer fraction has an MW below Smax and all values of L between ?0.35 to 0.35; and the high molecular weight polymer fraction has an MW above Smax and a maximum value of L between 0.8 and 1.5.
    Type: Application
    Filed: March 26, 2021
    Publication date: April 27, 2023
    Applicant: Dow Global Technologies LLC
    Inventors: Robert D.J. Froese, Keran Lu, Robert L. Sammler
  • Publication number: 20220235154
    Abstract: Processes for polymerizing polyolefins include contacting ethylene and optionally one or more (C3-C12)?-olefin in the presence of a catalyst system, wherein the catalyst system comprises a metal-ligand complex having a structure according to formula (I).
    Type: Application
    Filed: May 28, 2020
    Publication date: July 28, 2022
    Applicant: Dow Global Technologies LLC
    Inventors: Andrew M. Camelio, Brad C. Bailey, Robert D.J. Froese, Sukrit Mukhopadhyay
  • Publication number: 20220227905
    Abstract: Embodiments of this disclosure include polymers comprising the polymerized product of ethylene, at least one diene comonomer, and optionally at least one C3 to C14 comonomer. The polymer comprises tri-functional long-chain branches resulting from the diene that occur at a frequency of at least 0.03 per 1000 carbon atoms of the polymer.
    Type: Application
    Filed: March 27, 2020
    Publication date: July 21, 2022
    Applicant: Dow Global Technologies LLC
    Inventors: Robert D. J. Froese, Teresita Kashyap, Oscar D. Redwine, Daniel J. Arriola, Robert L. Sammler, Cornelis F. J. Den Doelder
  • Publication number: 20220213246
    Abstract: Processes of synthesizing long-chain branched polymers. The processes include contacting together one or more C2-C14 alkene monomers, at least one diene, optionally a solvent, and a multi-chain catalyst optionally in the presence of hydrogen, wherein the multi-chain catalyst comprises a plurality of polymerization sites; producing at least two polymer chains of the C2-C14 alkene monomers, each polymer chain polymerizing at one of the polymerization sites; synthesizing the long-chain branched polymers by connecting the two polymer chains with the diene, the joining of the two polymer chains being performed in a concerted manner during the polymerization; and producing tri-functional long chain branches from the diene, wherein the tri-functional long chain branches occur at a frequency of at least 0.03 per 1000 carbon atoms.
    Type: Application
    Filed: March 27, 2020
    Publication date: July 7, 2022
    Applicant: Dow Global Technologies LLC
    Inventors: Robert D.J. Froese, Bryan Stubbert, Daniel Arriola, Rachel E. M. Brooner, Oscar D. Redwine
  • Publication number: 20220169761
    Abstract: Processes of synthesizing long-chain branched polymers. The processes include contacting together one or more C2-C14 alkene monomers, at least one diene, optionally a solvent, and a multi-chain catalyst optionally in the presence of hydrogen, wherein the multi-chain catalyst comprises a plurality of polymerization sites; producing at least two polymer chains of the C2-C14 alkene monomers, each polymer chain polymerizing at one of the polymerization sites; synthesizing the long-chain branched polymers by connecting the two polymer chains with the diene, the joining of the two polymer chains being performed in a concerted manner during the polymerization; and producing tri-functional long chain branches and tetra-functional long chain branches from the diene, wherein the long-chain branched polymers have a ratio of tri-functional to tetra-functional long chain branches from 0.05:1 to 100:0; and adjusting the ratio of tri-functional and tetra-functional long chain branches.
    Type: Application
    Filed: March 27, 2020
    Publication date: June 2, 2022
    Applicant: Dow Global Technologies LLC
    Inventors: Robert D.J. Froese, Rachel E. M. Brooner, Daniel J. Arriola, Bryan D. Stubbert, Oscar D. Redwine
  • Publication number: 20220033547
    Abstract: Ethylene-based polymers of this disclosure include a melt viscosity ratio (V0.1/V100) at 190° C. of at least 10, where V0.1 is the viscosity of the ethylene-based polymer at 190° C. at a shear rate of 0.1 radians/second, and V100 is the viscosity of the ethylene-based polymer at 190° C. at a shear rate of 100 radians/second; and a molecular weight tail quantified by an MWD area metric, ATAIL, and ATAIL is less than or equal to 0.04 as determined by gel permeation chromatography using a triple detector.
    Type: Application
    Filed: September 27, 2019
    Publication date: February 3, 2022
    Applicant: Dow Global Technologies LLC
    Inventors: Teresita Kashyap, Robert D.J. Froese, Daniel J. Arriola
  • Publication number: 20220033548
    Abstract: The present process embodiments for synthesizing long-chain branched copolymers include contacting together one or more C2-C14 alkene monomers, at least one diene or polyene, optionally a solvent, and a multi-chain catalyst. The multi-chain catalyst includes a plurality of polymerization sites and produces at least two polymer chains of the C2-C14 alkene monomers, each polymer chain polymerizing at one of the polymerization sites. The process synthesizes the long-chain branched polymers by connecting the two polymer chains with the diene or polyene, the joining of the two polymer chains being performed in a concerted manner during the polymerization.
    Type: Application
    Filed: September 27, 2019
    Publication date: February 3, 2022
    Applicant: Dow Global Technologies LLC
    Inventors: Robert D.J. Froese, Daniel J. Arriola, Bryan D. Stubbert
  • Publication number: 20220033546
    Abstract: Ethylene-based polymers of this disclosure include an average g? less than 0.86, where the average g? is an intrinsic viscosity ratio determined by gel permeation chromatography using a triple detector; and a molecular weight tail quantified by an MWD area metric, ATAIL, and ATAIL is less than or equal to 0.04 as determined by gel permeation chromatography using a triple detector.
    Type: Application
    Filed: September 27, 2019
    Publication date: February 3, 2022
    Applicant: Dow Global Technologies LLC
    Inventors: Daniel J. Arriola, Robert D.J. Froese, Teresita Kashyap
  • Patent number: 11214632
    Abstract: Embodiments are directed to monophosphaguanidine ligands and the bis ligated metal-complexes formed therefrom, wherein the metal-ligand complexes are polymerization catalysts comprising the following structure (I).
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: January 4, 2022
    Assignee: Dow Global Technologies LLC
    Inventors: Andrew M. Camelio, Arkady L. Krasovskiy, Matthew D. Christianson, Amaruka Hazari, Heather Spinney, Robert D J Froese
  • Publication number: 20210388131
    Abstract: Ethylene-based polymers comprise reaction products of polymerizing ethylene monomer, at least one diene or polyene comonomer, and optionally at least one C3 to C14 comonomer under defined polymerization reaction conditions, the ethylene-based polymer having: an Mw/Mw0 greater than 1.20. The Mw0 is the initial weight-average molecular weight of a comparative ethylene-based polymer by gel permeation chromatography. The comparative ethylene-based polymer being a reaction product of polymerizing ethylene monomer and all C3 to C14 comonomers present in the ethylene-based polymer, if any, without the at least one polyene comonomer, under the defined polymerization reaction conditions; and a molecular weight tail quantified by an MWD area metric, ATAIL, and ATAIL is less than or equal to 0.04 as determined by gel permeation chromatography using a triple detector.
    Type: Application
    Filed: September 27, 2019
    Publication date: December 16, 2021
    Applicant: Dow Global Technologies LLC
    Inventors: Robert D.J. Froese, Daniel J. Arriola, Teresita Kashyap, Bryan D. Stubbert
  • Patent number: 11168161
    Abstract: Embodiments are directed to catalyst systems comprising at least one metal ligand complex and to processes for polyolefin polymerization incorporating the catalyst systems.
    Type: Grant
    Filed: June 20, 2018
    Date of Patent: November 9, 2021
    Assignee: Dow Global Technologies LLC
    Inventors: Andrew M. Camelio, Endre Szuromi, David D. Devore, Robert D. J. Froese
  • Patent number: 11104751
    Abstract: Embodiments are directed to catalyst systems comprising at least one metal ligand complex and to processes for polyolefin polymerization incorporating the catalyst systems.
    Type: Grant
    Filed: June 19, 2018
    Date of Patent: August 31, 2021
    Assignee: Dow Global Technologies LLC
    Inventors: Andrew M. Camelio, Endre Szuromi, David D. Devore, Robert D. J. Froese
  • Patent number: 11066495
    Abstract: Embodiments are directed to phosphaguanidine metal complexes of formula I and using those complexes in ?-olefin polymerization systems.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: July 20, 2021
    Assignee: Dow Global Technology LLC
    Inventors: Andrew M. Camelio, Matthew D. Christianson, Robert D. J. Froese
  • Patent number: 11066488
    Abstract: Embodiments are directed to a catalyst system comprising metal-ligand complexes and processes for polyolefin polymerization using the metal-ligand complex having the following structure:
    Type: Grant
    Filed: June 18, 2018
    Date of Patent: July 20, 2021
    Assignee: Dow Global Technologies LLC
    Inventors: Endre Szuromi, David D. Devore, Robert D. J. Froese, Arkady L. Krasovskiy, Lixin Sun, Kevin A. Frazier, Joseph S. Renny
  • Patent number: 11028190
    Abstract: Embodiments are directed to bis- and poly-phosphaguanidine compounds, and the metal-ligand complexes formed therefrom, wherein the metal complexes can be used as procatalysts in polyolefin polymerization. Formulas (I) (II) and (III).
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: June 8, 2021
    Assignee: Dow Global Technologies LLC
    Inventors: Andrew M. Camelio, Arkady L. Krasovskiy, Matthew D. Christianson, Robert D J Froese