Patents by Inventor Robert D. Koudelka

Robert D. Koudelka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090064922
    Abstract: Methods are disclosed for producing highly doped semiconductor materials. Using the invention, one can achieve doping densities that exceed traditional, established carrier saturation limits without deleterious side effects. Additionally, highly doped semiconductor materials are disclosed, as well as improved electronic and optoelectronic devices/components using said materials. The innovative materials and processes enabled by the invention yield significant performance improvements and/or cost reductions for a wide variety of semiconductor-based microelectronic and optoelectronic devices/systems. Materials are grown in an anion-rich environment, which, in the preferred embodiment, are produced by moderate substrate temperatures during growth in an oxygen-poor environment.
    Type: Application
    Filed: February 20, 2007
    Publication date: March 12, 2009
    Inventors: Thomas D. Boone, Eric S. Harmon, Robert D. Koudelka, David B. Salzman, Jerry M. Woodall
  • Patent number: 7179329
    Abstract: Methods are disclosed for producing highly doped semiconductor materials. Using the invention, one can achieve doping densities that exceed traditional, established carrier saturation limits without deleterious side effects. Additionally, highly doped semiconductor materials are disclosed, as well as improved electronic and optoelectronic devices/components using said materials. The innovative materials and processes enabled by the invention yield significant performance improvements and/or cost reductions for a wide variety of semiconductor-based microelectronic and optoelectronic devices/systems. Materials are grown in an anion-rich environment, which, in the preferred embodiment, are produced by moderate substrate temperatures during growth in an oxygen-poor environment.
    Type: Grant
    Filed: October 22, 2002
    Date of Patent: February 20, 2007
    Assignee: Yale University
    Inventors: Thomas Boone, Eric S. Harmon, Robert D. Koudelka, David B. Salzman, Jerry M. Woodall
  • Patent number: 6607932
    Abstract: A light emitting device providing a first part that includes a source of excess minority carriers including excess electron-hole pairs; a second part, coupled to the first part, that includes a minority carrier barrier; and a third part, coupled to the second part, that includes a region that exhibits a low radiative recombination efficiency and a short minority carrier lifetime. In response to a first stimulus minority carriers are constrained by the second part to remain in the first part, leading to an increase of minority carrier radiative recombination in the first part and an increase in light emission; while in response to a second stimulus the minority carriers are enabled to cross the minority carrier barrier of the second part to enter the third part, leading to a decrease of minority carrier radiative recombination in the first part and a decrease in light emission.
    Type: Grant
    Filed: August 28, 2002
    Date of Patent: August 19, 2003
    Assignee: Yale University
    Inventors: Jerry M. Woodall, Robert D. Koudelka
  • Publication number: 20030121468
    Abstract: Methods are disclosed for producing highly doped semiconductor materials. Using the invention, one can achieve doping densities that exceed traditional, established carrier saturation limits without deleterious side effects. Additionally, highly doped semiconductor materials are disclosed, as well as improved electronic and optoelectronic devices/components using said materials. The innovative materials and processes enabled by the invention yield significant performance improvements and/or cost reductions for a wide variety of semiconductor-based microelectronic and optoelectronic devices/systems.
    Type: Application
    Filed: October 22, 2002
    Publication date: July 3, 2003
    Inventors: Thomas D. Boone, Eric S. Harmon, Robert D. Koudelka, David B. Salzman, Jerry M. Woodall
  • Publication number: 20030006419
    Abstract: A light emitting device is constructed so as to provide a first part that includes a source of excess minority carriers including excess electron-hole pairs; a second part, coupled to the first part, that includes a minority carrier barrier; and a third part, coupled to the second part, that includes a region that exhibits a low radiative recombination efficiency and a short minority carrier lifetime. In response to a first stimulus minority carriers are constrained by the second part to remain in the first part, leading to an increase of minority carrier radiative recombination in the first part and an increase in light emission; while in response to a second stimulus the minority carriers are enabled to cross the minority carrier barrier of the second part to enter the third part, leading to a decrease of minority carrier radiative recombination in the first part and a decrease in light emission.
    Type: Application
    Filed: August 28, 2002
    Publication date: January 9, 2003
    Applicant: YALE UNIVERSITY
    Inventors: Jerry M. Woodall, Robert D. Koudelka
  • Patent number: 6448582
    Abstract: A light emitting device is constructed so as to provide a first part that includes a source of excess minority carriers including excess electron-hole pairs; a second part, coupled to the first part, that includes a minority carrier barrier; and a third part, coupled to the second part, that includes a region that exhibits a low radiative recombination efficiency and a short minority carrier lifetime. In response to a first stimulus minority carriers are constrained by the second part to remain in the first part, leading to an increase of minority carrier radiative recombination in the first part and an increase in light emission; while in response to a second stimulus the minority carriers are enabled to cross the minority carrier barrier of the second part to enter the third part, leading to a decrease of minority carrier radiative recombination in the first part and a decrease in light emission.
    Type: Grant
    Filed: September 21, 2000
    Date of Patent: September 10, 2002
    Assignee: Yale University
    Inventors: Jerry M. Woodall, Robert D. Koudelka