Patents by Inventor Robert D. Litt

Robert D. Litt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9643151
    Abstract: An integrated microchannel reactor and heat exchanger comprising: (a) a waveform sandwiched between opposing shim sheets and mounted to the shim sheets to form a series of microchannels, where each microchannel includes a pair of substantially straight side walls, and a top wall formed by at least one of the opposing shim sheets, and (b) a first set of microchannels in thermal communication with the waveform, where the waveform has an aspect ratio greater than two.
    Type: Grant
    Filed: August 17, 2016
    Date of Patent: May 9, 2017
    Assignee: VELOCYS, INC.
    Inventors: Anna Lee Y. Tonkovich, Robert D. Litt, Timothy M. Werner, Bin Yang
  • Publication number: 20160354753
    Abstract: An integrated microchannel reactor and heat exchanger comprising: (a) a waveform sandwiched between opposing shim sheets and mounted to the shim sheets to form a series of microchannels, where each microchannel includes a pair of substantially straight side walls, and a top wall formed by at least one of the opposing shim sheets, and (b) a first set of microchannels in thermal communication with the waveform, where the waveform has an aspect ratio greater than two.
    Type: Application
    Filed: August 17, 2016
    Publication date: December 8, 2016
    Inventors: Anna Lee Y. Tonkovich, Robert D. Litt, Timothy M. Werner, Bin Yang
  • Publication number: 20150045459
    Abstract: An integrated microchannel reactor and heat exchanger comprising: (a) a waveform sandwiched between opposing shim sheets and mounted to the shim sheets to form a series of microchannels, where each microchannel includes a pair of substantially straight side walls, and a top wall formed by at least one of the opposing shim sheets, and (b) a first set of microchannels in thermal communication with the waveform, where the waveform has an aspect ratio greater than two.
    Type: Application
    Filed: October 27, 2014
    Publication date: February 12, 2015
    Inventors: Anna Lee Y. Tonkovich, Robert D. Litt, Timothy M. Werner, Bin Yang
  • Patent number: 8889087
    Abstract: An integrated microchannel reactor and heat exchanger comprising: (a) a waveform sandwiched between opposing shim sheets and mounted to the shim sheets to form a series of microchannels, where each microchannel includes a pair of substantially straight side walls, and a top wall formed by at least one of the opposing shim sheets, and (b) a first set of microchannels in thermal communication with the waveform, where the waveform has an aspect ratio greater than two.
    Type: Grant
    Filed: July 23, 2013
    Date of Patent: November 18, 2014
    Inventors: Anna Lee Y. Tonkovich, Robert D. Litt, Timothy M. Werner, Bin Yang
  • Publication number: 20140186229
    Abstract: An integrated microchannel reactor and heat exchanger comprising: (a) a waveform sandwiched between opposing shim sheets and mounted to the shim sheets to form a series of microchannels, where each microchannel includes a pair of substantially straight side walls, and a top wall formed by at least one of the opposing shim sheets, and (b) a first set of microchannels in thermal communication with the waveform, where the waveform has an aspect ratio greater than two.
    Type: Application
    Filed: July 23, 2013
    Publication date: July 3, 2014
    Inventors: Anna Lee Y. Tonkovich, Robert D. Litt, Timothy M. Werner, Bin Yang
  • Patent number: 8497308
    Abstract: A process for carrying out at least two unit operations in series, the process comprising the step of: (a) directing a feed stream into an integrated assembly which comprises a first microchannel unit operation upon at least one chemical of the feed stream to generate a distributed output stream that exits the first microchannel unit operation in a first set of discrete microchannels isolating flow through the discrete microchannels; and (b) directing the distributed output stream of the first microchannel unit operation into a second microchannel unit operation as a distributed input stream, to continue isolating flow between the first set of discrete microchannels, and conducting at least one operation upon at least one chemical of the input stream to generate a product stream that exits the second microchannel unit operation, where the first microchannel unit operation and the second unit operation share a housing.
    Type: Grant
    Filed: September 5, 2007
    Date of Patent: July 30, 2013
    Assignee: Velocys, Inc.
    Inventors: Anna Lee Y. Tonkovich, Robert D. Litt, Timothy M. Werner, Bin Yang
  • Patent number: 8221528
    Abstract: Methods of using microchannel separation systems including absorbents to improve thermal efficiency and reduce parasitic power loss. Energy is typically added to desorb a solute and then energy or heat is removed to absorb a solute using a working solution. The working solution or absorbent may comprise an ionic liquid, or other fluids that demonstrate a difference in affinity between a solute and other gases in a solution.
    Type: Grant
    Filed: August 1, 2008
    Date of Patent: July 17, 2012
    Assignee: Velocys, Inc.
    Inventors: Anna Lee Y. Tonkovich, Robert D. Litt, Ravi Arora, Qiu Dongming, Micheal Jay Lamont, Maddalena Fanelli, Wayne W. Simmons, Laura J. Silva, Steven Perry
  • Patent number: 8029604
    Abstract: Methods of using microchannel separation systems including absorbents to improve thermal efficiency and reduce parasitic power loss. Energy is typically added to desorb methane and then energy or heat is removed to absorb methane using a working solution. The working solution or absorbent may comprise an ionic liquid, or other fluids that demonstrate a difference in affinity between methane and nitrogen in a solution.
    Type: Grant
    Filed: August 1, 2008
    Date of Patent: October 4, 2011
    Assignee: Velocys, Inc.
    Inventors: Anna Lee Y. Tonkovich, Robert D. Litt, Qiu Dongming, Laura J. Silva, Micheal Jay Lamont, Maddalena Fanelli, Wayne W. Simmons, Steven Perry
  • Publication number: 20100280136
    Abstract: A process for carrying out at least two unit operations in series, the process comprising the step of: (a) directing a feed stream into an integrated assembly which comprises a first microchannel unit operation upon at least one chemical of the feed stream to generate a distributed output stream that exits the first microchannel unit operation in a first set of discrete microchannels isolating flow through the discrete microchannels; and (b) directing the distributed output stream of the first microchannel unit operation into a second microchannel unit operation as a distributed input stream, to continue isolating flow between the first set of discrete microchannels, and conducting at least one operation upon at least one chemical of the input stream to generate a product stream that exits the second microchannel unit operation, where the first microchannel unit operation and the second unit operation share a housing.
    Type: Application
    Filed: September 5, 2007
    Publication date: November 4, 2010
    Inventors: Anna Lee Y. Tonkovich, Robert D. Litt, Timothy M. Werner, Bin Yang
  • Patent number: 7820725
    Abstract: A process for carrying out at least two unit operations in series, the process comprising the step of: (a) directing a feed stream into an integrated assembly which comprises a first microchannel unit operation upon at least one chemical of the feed stream to generate a distributed output stream that exits the first microchannel unit operation in a first set of discrete microchannels isolating flow through the discrete microchannels; and (b) directing the distributed output stream of the first microchannel unit operation into a second microchannel unit operation as a distributed input stream, to continue isolating flow between the first set of discrete microchannels, and conducting at least one operation upon at least one chemical of the input stream to generate a product stream that exits the second microchannel unit operation, where the first microchannel unit operation and the second unit operation share a housing.
    Type: Grant
    Filed: September 5, 2006
    Date of Patent: October 26, 2010
    Assignee: Velocys, Inc.
    Inventors: Anna Lee Y. Tonkovich, Robert D. Litt
  • Publication number: 20100024645
    Abstract: Methods of using microchannel separation systems including absorbents to improve thermal efficiency and reduce parasitic power loss. Energy is typically added to desorb a solute and then energy or heat is removed to absorb a solute using a working solution. The working solution or absorbent may comprise an ionic liquid, or other fluids that demonstrate a difference in affinity between a solute and other gases in a solution.
    Type: Application
    Filed: August 1, 2008
    Publication date: February 4, 2010
    Inventors: Anna Lee Y. Tonkovich, Robert D. Litt, Ravi Arora, Qiu Dongming, Micheal Jay Lamont, Maddalena Fanelli, Wayne W. Simmons, Laura J. Silva, Steven Perry
  • Publication number: 20090071335
    Abstract: Methods of using microchannel separation systems including absorbents to improve thermal efficiency and reduce parasitic power loss. Energy is typically added to desorb methane and then energy or heat is removed to absorb methane using a working solution. The working solution or absorbent may comprise an ionic liquid, or other fluids that demonstrate a difference in affinity between methane and nitrogen in a solution.
    Type: Application
    Filed: August 1, 2008
    Publication date: March 19, 2009
    Inventors: Anna Lee Y. Tonkovich, Robert D. Litt, Qiu Dongming, Laura J. Silva, Micheal Jay Lamont, Maddalena Fanelli, Wayne W. Simmons, Steven Perry
  • Publication number: 20090043141
    Abstract: A microchannel apparatus comprising a conduit including a microchannel mixing section, a microchannel reaction section, a microchannel heat transfer section, and a separation section, where the microchannel mixing section includes direct injection inlets, where the microchannel mixing section is downstream from the reaction section, and where the separation section is downstream from the reaction section. Further exemplary embodiments are also disclosed.
    Type: Application
    Filed: May 30, 2008
    Publication date: February 12, 2009
    Inventors: Terry Mazanec, Wayne Simmons, John Brophy, Fred Pesa, Anna Lee Y. Tonkovich, Robert D. Litt, Dongming Qiu, Laura J. Silva, Micheal J. Lamont, Maddalena Fanelli
  • Patent number: 7445650
    Abstract: A method of starting up and shutting down a microchannel process is provided. Included are the steps of providing a first multi-planar process unit, preferably adapted to process an endothermic reaction, a second multi-planar process unit, preferably adapted to process an exothermic reaction, providing a containment vessel, the containment vessel containing at least a portion of the first, and preferably the second, process unit. In startup, the microchannel process is first checked for pressure integrity by pressurizing and checking the important components of the process for leaks. Subsequently, the process units are heated by introducing a dilute low-thermal energy density material, preferably to the second process unit, followed by the introduction of a dilute high-thermal energy density material, and adjusting the proportion of high-thermal energy density material as required. In shutdown, a purge material from the containment vessel is introduced into the first, and preferably the second, process unit.
    Type: Grant
    Filed: March 11, 2005
    Date of Patent: November 4, 2008
    Assignee: Velocys, Inc.
    Inventors: Christopher P. Weil, Robert D. Litt, William Allen Rogers, Jr., Richard K. Bennett, Elizabeth A. De Lucia
  • Publication number: 20080058434
    Abstract: A process for carrying out at least two unit operations in series, the process comprising the step of: (a) directing a feed stream into an integrated assembly which comprises a first microchannel unit operation upon at least one chemical of the feed stream to generate a distributed output stream that exits the first microchannel unit operation in a first set of discrete microchannels isolating flow through the discrete microchannels; and (b) directing the distributed output stream of the first microchannel unit operation into a second microchannel unit operation as a distributed input stream, to continue isolating flow between the first set of discrete microchannels, and conducting at least one operation upon at least one chemical of the input stream to generate a product stream that exits the second microchannel unit operation, where the first microchannel unit operation and the second unit operation share a housing.
    Type: Application
    Filed: September 5, 2006
    Publication date: March 6, 2008
    Inventors: Anna Lee Y. Tonkovich, Robert D. Litt
  • Patent number: 6838069
    Abstract: Apparatus, materials, and methods for removing ammonia from fluid using metal hydroxides (e.g. zinc hydroxide) and metal cation loaded media (e.g. zinc loaded ion exchange resins); the metal hydroxides and metal cation loaded media may be regenerated with a weak acid (pKa between 3 and 7). Alternatively, ammonia is removed from fluids by using H2SO4 and ZnSO4 and metal cation loaded media; the metal cation loaded media may be regenerated with H2SO4 and ZnSO4; the ammonia containing H2SO4 and H2SO4 may be concentrated as necessary to form (NH4)2SO4.ZnSO4.6H2O (ammonium zinc sulfate hexahydrate) crystals. These crystals are removed from the mother liquor and heated to temperatures exceeding 200° C. releasing NH3 and H2O vapor upon the decomposition of the crystals.
    Type: Grant
    Filed: January 17, 2003
    Date of Patent: January 4, 2005
    Assignee: Battelle Memorial Institute
    Inventors: Scott J. Blonigen, Alex G. Fassbender, Robert D. Litt, Bruce F. Monzyk, Richelle Neff
  • Publication number: 20030215377
    Abstract: Apparatus, materials, and methods for removing ammonia from fluids using metal hydroxides (e.g. zinc hydroxide) and metal loaded media (e.g. zinc loaded ion exchange resins); the metal hydroxides and metal loaded media may be regenerated with a weak acid (pKa between 3 and 7). Alternatively, ammonia is removed from fluids by using H2SO4 and ZnSO4 and metal loaded media; the metal loaded media may be regenerated with H2SO4 and ZnSO4; the ammonia containing H2SO4 and ZnSO4 may be concentrated as necessary to form (NH4)2SO4.ZnSO4.6H2O (ammonium zinc sulfate hexahydrate) crystals. These crystals are removed from the mother liquor and heated to temperatures exceeding 200° C. releasing NH3 and H2O vapor upon the decomposition of the crystals.
    Type: Application
    Filed: January 17, 2003
    Publication date: November 20, 2003
    Inventors: Scott J. Blonigen, Alex G. Fassbender, Robert D. Litt, Bruce F. Monzyk, Richelle L. Neff
  • Patent number: 6558643
    Abstract: Methods for direct reduction of ammonia from waste streams by the steps of reacting an aqueous ammonia containing waste stream with a solution of a strong acid and a metal salt, wherein the cation in said metal salt of said solution is selected from the group consisting of Ag, Cd, Co, Cr, Cu, Hg, Ni, Pd, Zn; and wherein an ammonium-double salt is formed with said metal salt in an ammonia depleted waste stream; and treating said depleted waste stream to crystallize an ammonium-metal double salt therefrom.
    Type: Grant
    Filed: December 29, 2000
    Date of Patent: May 6, 2003
    Assignee: Battelle Memorial Institute
    Inventors: Scott J. Blonigen, Alexander G. Fassbender, Robert D. Litt, Bruce F. Monzyk, Richelle Neff
  • Publication number: 20010037976
    Abstract: Apparatus, materials, and methods for removing ammonia from fluids using metal hydroxides (e.g. zinc hydroxide) and metal loaded media (e.g. zinc loaded ion exchange resins); the metal hydroxides and metal loaded media may be regenerated with a weak acid (pKa between 3 and 7). Alternatively, ammonia is removed from fluids by using H2SO4 and ZnSO4 and metal loaded media; the metal loaded media may be regenerated with H2SO4 and ZnSO4; the ammonia containing H2SO4 and ZnSO4 may be concentrated as necessary to form (NH4)2SO4.ZnSO4.6H2O (ammonium zinc sulfate hexahydrate) crystals. These crystals are removed from the mother liquor and heated to temperatures exceeding 200° C. releasing NH3 and H2O vapor upon the decomposition of the crystals.
    Type: Application
    Filed: December 29, 2000
    Publication date: November 8, 2001
    Inventors: Scott J. Blonigen, Alexander G. Fassbender, Robert D. Litt, Bruce F. Monzyk, Richelle Neff
  • Publication number: 20010033816
    Abstract: Apparatus, materials, and methods for removing ammonia from fluids using metal hydroxides (e.g. zinc hydroxide) and metal loaded media (e.g. zinc loaded ion exchange resins); the metal hydroxides and metal loaded media may be regenerated with a weak acid (pKa between 3 and 7). Alternatively, ammonia is removed from fluids by using H2SO4 and ZnSO4 and metal loaded media; the metal loaded media may be regenerated with H2SO4 and ZnSO4; the ammonia containing H2SO4 and ZnSO4 may be concentrated as necessary to form (NH4)2SO4.ZnSO4.6H2O (ammonium zinc sulfate hexahydrate) crystals. These crystals are removed from the mother liquor and heated to temperatures exceeding 200° C. releasing NH3 and H2O vapor upon the decomposition of the crystals.
    Type: Application
    Filed: January 4, 2001
    Publication date: October 25, 2001
    Inventors: Scott J. Blonigen, Alexander G. Fassbender, Robert D. Litt, Bruce F. Monzyk, Richelle Neff