Patents by Inventor Robert D. Ozawa

Robert D. Ozawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10173064
    Abstract: An implantable medical device (IMD) is disclosed having measurement circuitry for measuring one or more currents in the IMD, such as the currents drawn from various power supply voltages. Such currents are measured without disrupting normal IMD operation, and can be telemetered from the IMD for review. Switching circuitry in line with the current being measured is temporarily opened for a time period to disconnect the power supply voltage from the circuitry being powered. A voltage across a capacitance in parallel with the circuitry is measured when the switching circuitry is opened and again closed at the end of the time period, with the circuitry drawing power from the charged capacitance during this time period. The average current drawn by the power supply voltage is determined using the difference in the measured voltages, the known capacitance, and the time period between the measurements.
    Type: Grant
    Filed: July 11, 2017
    Date of Patent: January 8, 2019
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Robert Graham Lamont, Damon Moazen, Robert D. Ozawa, Thomas W. Stouffer
  • Publication number: 20180043166
    Abstract: An external controller is disclosed for communicating with an external trial stimulator (ETS) for an implantable medical device. The external controller is programmed with a battery algorithm able to assist a clinician in choosing a suitable implant for the patient based on battery performance parameters estimated for a number of implants during an external trial stimulation phase that precedes implantation of the implant. The algorithm is particularly useful in assisting the clinician in choosing between a rechargeable-battery implant or a primary-battery implant for the patient.
    Type: Application
    Filed: October 12, 2017
    Publication date: February 15, 2018
    Inventors: Dennis A. Vansickle, Robert D. Ozawa
  • Patent number: 9861825
    Abstract: Preferred orientations and placements of an inductor relative to a communication coil in an Implantable Medical Device (IMD) are disclosed. The inductor can comprise part of a boost converter used to generate a power supply voltage in the IMD, which inductor may interfere with the coil. The inductor may have a length defined by its windings around an axis, which axis may be in a plane of the coil or in a plane parallel to the coil. The inductor can be included within the area extent of the coil, and is preferably oriented such that its axis is parallel to a maximum dimension of the coil. Ends of the inductor are further preferably equidistant from the coil. So oriented and placed, the inductor is less prone to interfering with the coil, thus improving communications with the IMD.
    Type: Grant
    Filed: October 28, 2014
    Date of Patent: January 9, 2018
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Robert D. Ozawa, Damon Moazen, Robert G. Lamont
  • Publication number: 20170304626
    Abstract: An implantable medical device (IMD) is disclosed having measurement circuitry for measuring one or more currents in the IMD, such as the currents drawn from various power supply voltages. Such currents are measured without disrupting normal IMD operation, and can be telemetered from the IMD for review. Switching circuitry in line with the current being measured is temporarily opened for a time period to disconnect the power supply voltage from the circuitry being powered. A voltage across a capacitance in parallel with the circuitry is measured when the switching circuitry is opened and again closed at the end of the time period, with the circuitry drawing power from the charged capacitance during this time period. The average current drawn by the power supply voltage is determined using the difference in the measured voltages, the known capacitance, and the time period between the measurements.
    Type: Application
    Filed: July 11, 2017
    Publication date: October 26, 2017
    Inventors: Robert Graham Lamont, Damon Moazen, Robert D. Ozawa, Thomas W. Stouffer
  • Patent number: 9789322
    Abstract: An external controller is disclosed for communicating with an external trial stimulator (ETS) for an implantable medical device. The external controller is programmed with a battery algorithm able to assist a clinician in choosing a suitable implant for the patient based on battery performance parameters estimated for a number of implants during an external trial stimulation phase that precedes implantation of the implant. The algorithm is particularly useful in assisting the clinician in choosing between a rechargeable-battery implant or a primary-battery implant for the patient.
    Type: Grant
    Filed: May 2, 2016
    Date of Patent: October 17, 2017
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Dennis A. Vansickle, Robert D. Ozawa
  • Patent number: 9713718
    Abstract: An implantable medical device (IMD) is disclosed having measurement circuitry for measuring one or more currents in the IMD, such as the currents drawn from various power supply voltages. Such currents are measured without disrupting normal IMD operation, and can be telemetered from the IMD for review. Switching circuitry in line with the current being measured is temporarily opened for a time period to disconnect the power supply voltage from the circuitry being powered. A voltage across a capacitance in parallel with the circuitry is measured when the switching circuitry is opened and again closed at the end of the time period, with the circuitry drawing power from the charged capacitance during this time period. The average current drawn by the power supply voltage is determined using the difference in the measured voltages, the known capacitance, and the time period between the measurements.
    Type: Grant
    Filed: June 8, 2016
    Date of Patent: July 25, 2017
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Robert Graham Lamont, Damon Moazen, Robert D. Ozawa, Thomas W. Stouffer
  • Publication number: 20160279421
    Abstract: An implantable medical device (IMD) is disclosed having measurement circuitry for measuring one or more currents in the IMD, such as the currents drawn from various power supply voltages. Such currents are measured without disrupting normal IMD operation, and can be telemetered from the IMD for review. Switching circuitry in line with the current being measured is temporarily opened for a time period to disconnect the power supply voltage from the circuitry being powered. A voltage across a capacitance in parallel with the circuitry is measured when the switching circuitry is opened and again closed at the end of the time period, with the circuitry drawing power from the charged capacitance during this time period. The average current drawn by the power supply voltage is determined using the difference in the measured voltages, the known capacitance, and the time period between the measurements.
    Type: Application
    Filed: June 8, 2016
    Publication date: September 29, 2016
    Inventors: Robert Graham Lamont, Damon Moazen, Robert D. Ozawa, Thomas W. Stouffer
  • Publication number: 20160243369
    Abstract: An external controller is disclosed for communicating with an external trial stimulator (ETS) for an implantable medical device. The external controller is programmed with a battery algorithm able to assist a clinician in choosing a suitable implant for the patient based on battery performance parameters estimated for a number of implants during an external trial stimulation phase that precedes implantation of the implant. The algorithm is particularly useful in assisting the clinician in choosing between a rechargeable-battery implant or a primary-battery implant for the patient.
    Type: Application
    Filed: May 2, 2016
    Publication date: August 25, 2016
    Inventors: Dennis A. Vansickle, Robert D. Ozawa
  • Patent number: 9364673
    Abstract: An implantable medical device (IMD) is disclosed having measurement circuitry for measuring one or more currents in the IMD, such as the currents drawn from various power supply voltages. Such currents are measured without disrupting normal IMD operation, and can be telemetered from the IMD for review. Switching circuitry in line with the current being measured is temporarily opened for a time period to disconnect the power supply voltage from the circuitry being powered. A voltage across a capacitance in parallel with the circuitry is measured when the switching circuitry is opened and again closed at the end of the time period, with the circuitry drawing power from the charged capacitance during this time period. The average current drawn by the power supply voltage is determined using the difference in the measured voltages, the known capacitance, and the time period between the measurements.
    Type: Grant
    Filed: September 30, 2014
    Date of Patent: June 14, 2016
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Robert Graham Lamont, Damon Moazen, Robert D. Ozawa, Thomas W. Stouffer
  • Patent number: 9339660
    Abstract: An implantable medical device (IMD) is disclosed having one or more magnetic field sensors for measuring a strength of a magnetic charging field provided by an external charger and used to provide operational power to the IMD, for example, to charge its battery. The measured field strength data, or derivations of such data, are telemetered to the external charger, which further process the received data if necessary and can inform a user whether alignment between the external charger and IMD is sufficient, a misalignment direction, and/or a misalignment distance, so that the user can attempt to improve the alignment of the external charger. The one or more sensors are preferably placed at or equidistantly around a center axis of the IMD's charging coil. However, the sensors may be placed at any number of locations in the IPG, and at different distances from the center axis.
    Type: Grant
    Filed: September 30, 2014
    Date of Patent: May 17, 2016
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Emanuel Feldman, Jordi Parramon, Robert D. Ozawa
  • Patent number: 9327135
    Abstract: An external controller is disclosed for communicating with an external trial stimulator (ETS) for an implantable medical device. The external controller is programmed with a battery algorithm able to assist a clinician in choosing a suitable implant for the patient based on battery performance parameters estimated for a number of implants during an external trial stimulation phase that precedes implantation of the implant. The algorithm is particularly useful in assisting the clinician in choosing between a rechargeable-battery implant or a primary-battery implant for the patient.
    Type: Grant
    Filed: May 6, 2014
    Date of Patent: May 3, 2016
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Dennis A. Vansickle, Robert D. Ozawa
  • Publication number: 20150246236
    Abstract: An improved architecture for an implantable medical device using a primary battery is disclosed which reduces the need for boosting the voltage of the primary battery, and hence reduces the power draw in the implant. The architecture includes a boost converter for boosting the voltage of the primary battery and for supplying that boosted voltage to certain of the circuit blocks, which is particularly useful if the battery voltage is necessarily lower than the minimal input power supply voltage necessary for the circuit blocks to operate. However, circuitry capable of operation even at low battery voltages—including the telemetry tank circuitry and the compliance voltage generator—receives the battery voltage directly without boosting, thus saving power.
    Type: Application
    Filed: May 14, 2015
    Publication date: September 3, 2015
    Inventors: Robert G. Lamont, Jordi Parramon, Robert D. Ozawa
  • Patent number: 9119967
    Abstract: An implantable control module for an implantable electrical stimulation system includes a housing with at least a portion of the exterior forming a metallic structure and at least a portion of the interior defining a sealed compartment. The control module further includes an electronic subassembly disposed in the sealed compartment; a connector assembly coupled to the housing and defining a port for receiving a lead; connector contacts disposed in the port to electrically couple with terminals of the lead; feedthrough interconnects extending from the connector assembly into the sealed compartment and coupling the connector contacts to the electronic subassembly; and a coil disposed within or on the housing and configured and arranged to be shorted when an external electromagnetic field is applied in order to resist generation of an eddy current in the metallic structure of the exterior of the sealed housing in response to the external electromagnetic field.
    Type: Grant
    Filed: September 2, 2014
    Date of Patent: September 1, 2015
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Gaurav Gupta, Robert D. Ozawa, Md Mizanur Rahman
  • Patent number: 9037241
    Abstract: An improved architecture for an implantable medical device using a primary battery is disclosed which reduces the need for boosting the voltage of the primary battery, and hence reduces the power draw in the implant. The architecture includes a boost converter for boosting the voltage of the primary battery and for supplying that boosted voltage to certain of the circuit blocks, which is particularly useful if the battery voltage is necessarily lower than the minimal input power supply voltage necessary for the circuit blocks to operate. However, circuitry capable of operation even at low battery voltages—including the telemetry tank circuitry and the compliance voltage generator—receives the battery voltage directly without boosting, thus saving power.
    Type: Grant
    Filed: August 14, 2013
    Date of Patent: May 19, 2015
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Robert G. Lamont, Jordi Parramon, Robert D. Ozawa
  • Publication number: 20150134029
    Abstract: Preferred orientations and placements of an inductor relative to a communication coil in an Implantable Medical Device (IMD) are disclosed. The inductor can comprise part of a boost converter used to generate a power supply voltage in the IMD, which inductor may interfere with the coil. The inductor may have a length defined by its windings around an axis, which axis may be in a plane of the coil or in a plane parallel to the coil. The inductor can be included within the area extent of the coil, and is preferably oriented such that its axis is parallel to a maximum dimension of the coil. Ends of the inductor are further preferably equidistant from the coil. So oriented and placed, the inductor is less prone to interfering with the coil, thus improving communications with the IMD.
    Type: Application
    Filed: October 28, 2014
    Publication date: May 14, 2015
    Inventors: Robert D. Ozawa, Damon Moazen, Robert G. Lamont
  • Publication number: 20150105842
    Abstract: An implantable medical device (IMD) is disclosed having measurement circuitry for measuring one or more currents in the IMD, such as the currents drawn from various power supply voltages. Such currents are measured without disrupting normal IMD operation, and can be telemetered from the IMD for review. Switching circuitry in line with the current being measured is temporarily opened for a time period to disconnect the power supply voltage from the circuitry being powered. A voltage across a capacitance in parallel with the circuitry is measured when the switching circuitry is opened and again closed at the end of the time period, with the circuitry drawing power from the charged capacitance during this time period. The average current drawn by the power supply voltage is determined using the difference in the measured voltages, the known capacitance, and the time period between the measurements.
    Type: Application
    Filed: September 30, 2014
    Publication date: April 16, 2015
    Inventors: Robert Graham Lamont, Damon Moazen, Robert D. Ozawa, Thomas W. Stouffer
  • Publication number: 20150100109
    Abstract: An implantable medical device (IMD) is disclosed having one or more magnetic field sensors for measuring a strength of a magnetic charging field provided by an external charger and used to provide operational power to the IMD, for example, to charge its battery. The measured field strength data, or derivations of such data, are telemetered to the external charger, which further process the received data if necessary and can inform a user whether alignment between the external charger and IMD is sufficient, a misalignment direction, and/or a misalignment distance, so that the user can attempt to improve the alignment of the external charger. The one or more sensors are preferably placed at or equidistantly around a center axis of the IMD's charging coil. However, the sensors may be placed at any number of locations in the IPG, and at different distances from the center axis.
    Type: Application
    Filed: September 30, 2014
    Publication date: April 9, 2015
    Inventors: Emanuel Feldman, Jordi Parramon, Robert D. Ozawa
  • Publication number: 20150073506
    Abstract: An implantable control module for an implantable electrical stimulation system includes a housing with at least a portion of the exterior forming a metallic structure and at least a portion of the interior defining a sealed compartment. The control module further includes an electronic subassembly disposed in the sealed compartment; a connector assembly coupled to the housing and defining a port for receiving a lead; connector contacts disposed in the port to electrically couple with terminals of the lead; feedthrough interconnects extending from the connector assembly into the sealed compartment and coupling the connector contacts to the electronic subassembly; and a coil disposed within or on the housing and configured and arranged to be shorted when an external electromagnetic field is applied in order to resist generation of an eddy current in the metallic structure of the exterior of the sealed housing in response to the external electromagnetic field.
    Type: Application
    Filed: September 2, 2014
    Publication date: March 12, 2015
    Inventors: Gaurav Gupta, Robert D. Ozawa, Md Mizanur Rahman
  • Publication number: 20140358194
    Abstract: An external controller is disclosed for communicating with an external trial stimulator (ETS) for an implantable medical device. The external controller is programmed with a battery algorithm able to assist a clinician in choosing a suitable implant for the patient based on battery performance parameters estimated for a number of implants during an external trial stimulation phase that precedes implantation of the implant. The algorithm is particularly useful in assisting the clinician in choosing between a rechargeable-battery implant or a primary-battery implant for the patient.
    Type: Application
    Filed: May 6, 2014
    Publication date: December 4, 2014
    Applicant: Boston Scientific Neuromodulation Corporation
    Inventors: Dennis A. Vansickle, Robert D. Ozawa
  • Publication number: 20130331910
    Abstract: An improved architecture for an implantable medical device using a primary battery is disclosed which reduces the need for boosting the voltage of the primary battery, and hence reduces the power draw in the implant. The architecture includes a boost converter for boosting the voltage of the primary battery and for supplying that boosted voltage to certain of the circuit blocks, which is particularly useful if the battery voltage is necessarily lower than the minimal input power supply voltage necessary for the circuit blocks to operate. However, circuitry capable of operation even at low battery voltages—including the telemetry tank circuitry and the compliance voltage generator—receives the battery voltage directly without boosting, thus saving power.
    Type: Application
    Filed: August 14, 2013
    Publication date: December 12, 2013
    Applicant: Boston Scientific Neuromodulation Corporation
    Inventors: Robert G. Lamont, Jordi Parramon, Robert D. Ozawa