Patents by Inventor Robert D. Patrie

Robert D. Patrie has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7219314
    Abstract: Described are methods for implementing customer designs in programmable logic devices (PLDs). The defect tolerance of these methods makes them particularly useful with the adoption of “nanotechnology” and molecular-scale technology, or “molectronics.” Test methods identify alternative physical interconnect resources for each net required in the user design and, as need, reroute certain signal paths using the alternative resources. The test methods additionally limit testing to required resources so devices are not rejected as a result of testing performed on unused resources. The tests limit functional testing of used resources to those functions required in the user designs.
    Type: Grant
    Filed: April 1, 2004
    Date of Patent: May 15, 2007
    Assignee: Xilinx, Inc.
    Inventors: Steven M. Trimberger, Shekhar Bapat, Robert W. Wells, Robert D. Patrie, Andrew W. Lai
  • Patent number: 7127697
    Abstract: Methods of utilizing partially defective PLDs, i.e., PLDs having localized defects. A partially defective PLD is tested for compatibility with a particular configuration bitstream. If the partially defective PLD is compatible with the bitstream (i.e., if the localized defect has no effect on the functionality of the design implemented by the bitstream), a product is made available that includes both the bitstream and the partially defective PLD. In some embodiments, the bitstream is stored in a memory device such as a programmable read-only memory (PROM). In some embodiments, the product is a chip set that includes the partially defective PLD and a separately-packaged PROM in which the bitstream has previously been stored. In some embodiments, the PROM is manufactured as part of the FPGA die.
    Type: Grant
    Filed: July 30, 2003
    Date of Patent: October 24, 2006
    Assignee: Xilinx, Inc.
    Inventors: Robert W. Wells, Robert D. Patrie, Andrew J. DeBaets
  • Patent number: 7007250
    Abstract: Disclosed methods for utilizing programmable logic devices that contain at least one localized defect. Such devices are tested to determine their suitability for implementing selected customer designs that may not require the resources impacted by the defect. If the FPGA is found to be unsuitable for one design, additional designs may be tested. The test methods in some embodiments employ test circuits derived from a user design to verify PLD resources required for the design. The test circuits allow PLD vendors to verify the suitability of a PLD for a given customer design without requiring the vendor to understand the design.
    Type: Grant
    Filed: March 12, 2003
    Date of Patent: February 28, 2006
    Assignee: Xilinx, Inc.
    Inventors: Shekhar Bapat, Robert W. Wells, Robert D. Patrie, Andrew W. Lai
  • Patent number: 6891395
    Abstract: Disclosed are methods for utilizing programmable logic devices that contain at least one localized defect. Such devices are tested to determine their suitability for implementing selected designs that may not require the resources impacted by the defect. If the FPGA is found to be unsuitable for one design, additional designs may be tested. The test methods in some embodiments employ test circuits derived from a user's design to verify PLD resources required for the design. The test circuits allow PLD vendors to verify the suitability of a PLD for a given user's design without requiring the PLD vendor to understand the user's design.
    Type: Grant
    Filed: May 25, 2004
    Date of Patent: May 10, 2005
    Assignee: Xilinx, Inc.
    Inventors: Robert W. Wells, Zhi-Min Ling, Robert D. Patrie, Vincent L. Tong, Jae Cho, Shahin Toutounchi
  • Patent number: 6817006
    Abstract: Disclosed are methods for utilizing programmable logic devices that contain at least one localized defect. Such devices are tested to determine their suitability for implementing selected designs that may not require the resources impacted by the defect. If the FPGA is found to be unsuitable for one design, additional designs may be tested. The test methods in some embodiments employ test circuits derived from a user's design to verify PLD resources required for the design. The test circuits allow PLD vendors to verify the suitability of a PLD for a given user's design without requiring the PLD vendor to understand the user's design.
    Type: Grant
    Filed: March 22, 2002
    Date of Patent: November 9, 2004
    Assignee: Xilinx, Inc.
    Inventors: Robert W. Wells, Zhi-Min Ling, Robert D. Patrie, Vincent L. Tong, Jae Cho, Shahin Toutounchi
  • Publication number: 20040216081
    Abstract: Disclosed are methods for utilizing programmable logic devices that contain at least one localized defect. Such devices are tested to determine their suitability for implementing selected designs that may not require the resources impacted by the defect. If the FPGA is found to be unsuitable for one design, additional designs may be tested. The test methods in some embodiments employ test circuits derived from a user's design to verify PLD resources required for the design. The test circuits allow PLD vendors to verify the suitability of a PLD for a given user's design without requiring the PLD vendor to understand the user's design.
    Type: Application
    Filed: May 25, 2004
    Publication date: October 28, 2004
    Applicant: Xilinx, Inc.
    Inventors: Robert W. Wells, Zhi-Min Ling, Robert D. Patrie, Vincent L. Tong, Jae Cho, Shahin Toutounchi
  • Patent number: 6651238
    Abstract: Fault coverage for the programmable interconnect of a programmable logic device (PLD) is provided. A user's design is modeled, thereby determining the programmable interconnect path in the device. The user's logic design is then modified, thereby facilitating the detection of faults. Specifically, any function generators in the PLD are implemented as predetermined logic gates, thereby forming a logic gate tree design. The synchronous elements in the user's design are preserved and transformed, if necessary, to provide controllability. Then, a vector can be exercised in the new design. A first readback of the PLD can be compared to a second readback of a fault-free model of the design.
    Type: Grant
    Filed: April 17, 2001
    Date of Patent: November 18, 2003
    Assignee: Xilinx, Inc.
    Inventors: Robert W. Wells, Robert D. Patrie, Eric J. Thorne, Michael M. Matera
  • Patent number: 6611477
    Abstract: A circuit measures the signal propagation delay through a selected test circuit. The test circuit is provided with a feedback path so that the test circuit and feedback path together form a free-running oscillator. The oscillator then automatically provides its own test signal that includes alternating rising and falling signal transitions on the test-circuit input node. A phase discriminator samples the output of the oscillator and accumulates data representing the signal propagation delay of either rising or falling signal transitions propagating through the test circuit. The worst-case delay associated with the test circuit can then be expressed as the longer of the two. Knowing the precise worst-case delay allows IC A designers to minimize the guard band and consequently guarantee higher speed performance.
    Type: Grant
    Filed: April 24, 2002
    Date of Patent: August 26, 2003
    Assignee: Xilinx, Inc.
    Inventors: Gil A. Speyer, David L. Ferguson, Daniel Y. Chung, Robert D. Patrie, Robert W. Wells, Robert O. Conn
  • Patent number: 6594610
    Abstract: A new testing method uses a field programmable gate array to emulate faults, instead of using a separate computer to simulate faults. In one embodiment, a few (e.g., two or three) known good FPGAs are selected. A fault is introduced into the design of a FPGA configuration. The configuration is loaded into the FPGAs. A test vector is applied and the result is evaluated. If the result is different from that of a fault-free configuration, the fault is caught. One application of this method is to evaluate fault coverage. A fault model that can be used in the present invention is disclosed.
    Type: Grant
    Filed: May 11, 2001
    Date of Patent: July 15, 2003
    Assignee: Xilinx, Inc.
    Inventors: Shahin Toutounchi, Anthony P. Calderone, Zhi-Min Ling, Robert D. Patrie, Eric J. Thorne, Robert W. Wells
  • Patent number: 6594797
    Abstract: Described are methods and circuits for accurately placing signal transitions, or “edges,” simultaneously on two or more pins of an integrated circuit (IC). A conventional tester is connected to an integrated circuit, such as a programmable logic device. The integrated circuit is adapted to include a coincidence detector that compares the timing of edges on two input pins of the integrated circuit. The coincidence detector indicates when the two edges are coincident, allowing an operator of the tester to adjust the tester to establish coincidence. The amount of offset necessary to provide coincident edges is stored in a database for later use in deskewing edges used in subsequent tests. The integrated circuit can be a programmable logic device configured to include one or more coincidence detectors with which to place edges relative to one another on different pins.
    Type: Grant
    Filed: March 9, 2000
    Date of Patent: July 15, 2003
    Assignee: Xilinx, Inc.
    Inventors: Rick W. Dudley, Jae Cho, Robert D. Patrie, Robert W. Wells
  • Patent number: 6539508
    Abstract: Described is a test circuit that can be instantiated on a programmable logic device to perform at-speed functional tests of programmable resources, including internal memory and routing resources. The resources to be tested are configured to instantiate a counter circuit connected to the address terminals of a linear-feedback shift register (LFSR). LFSRs are cyclic, in the sense that when clocked repeatedly they go through a fixed sequence of states. Consequently, an LFSR that starts with a known set of data has a predictable set of data after a given number of clock periods. The LFSR is preset to a known count and clocked a known number of times. The resulting count is then compared with a reference. If the resulting count matches the reference, then all of the resources used to implement the test circuit, including the memory and routing resources used to implement the LFSR, are deemed fully functional at the selected clock speed.
    Type: Grant
    Filed: March 15, 2000
    Date of Patent: March 25, 2003
    Assignee: Xilinx, Inc.
    Inventors: Robert D. Patrie, Robert W. Wells
  • Patent number: 6466520
    Abstract: A circuit measures the signal propagation delay through a selected test circuit. The test circuit is provided with a feedback path so that the test circuit and feedback path together form a free-running oscillator. The oscillator then automatically provides its own test signal that includes alternating rising and falling signal transitions on the test-circuit input node. A phase discriminator samples the output of the oscillator and accumulates data representing the signal propagation delay of either rising or falling signal transitions propagating through the test circuit. The worst-case delay associated with the test circuit can then be expressed as the longer of the two. Knowing the precise worst-case delay allows IC designers to minimize the guard band and consequently guarantee higher speed performance.
    Type: Grant
    Filed: February 5, 1999
    Date of Patent: October 15, 2002
    Assignee: Xilinx, Inc.
    Inventors: Gil A. Speyer, David L. Ferguson, Daniel Y. Chung, Robert D. Patrie, Robert W. Wells, Robert O. Conn
  • Patent number: 6356514
    Abstract: A circuit measures the signal propagation delay through a selected test circuit. The test circuit is provided with a feedback path so that the test circuit and feedback path together form a free-running oscillator. The oscillator then automatically provides its own test signal that includes alternating rising and falling signal transitions on the test-circuit input node. These signal transitions are counted over a predetermined time period to establish the period of the oscillator. The period of the oscillator is then related to the average signal propagation delay through the test circuit. The invention can be applied to synchronous components that might fail to oscillate by connecting the asynchronous set or clear terminal to the output terminal so that the oscillator oscillates at a frequency determined by the clock-to-out delay of those components.
    Type: Grant
    Filed: March 23, 2001
    Date of Patent: March 12, 2002
    Assignee: Xilinx, Inc.
    Inventors: Robert W. Wells, Robert D. Patrie, Robert O. Conn
  • Patent number: 6232845
    Abstract: A circuit measures a signal propagation delay through a series of memory elements. In one embodiment the memory elements are configured in series so that together they form a delay circuit. In another embodiment the memory elements are configured in a loop to form a ring oscillator. Each memory element propagates a signal to a subsequent memory element so that the time the signal takes to traverse all of the memory elements is proportional to the average delay induced by the individual elements. This proportionality provides an effective means for measuring the delays of those components. Various embodiments of the invention measure the speeds at which memory elements can be preset, cleared, written to, read from, or clock enabled.
    Type: Grant
    Filed: July 22, 1999
    Date of Patent: May 15, 2001
    Assignee: Xilinx, Inc.
    Inventors: Christopher H. Kingsley, Trevor J. Bauer, Robert W. Wells, Robert D. Patrie
  • Patent number: 6233205
    Abstract: A circuit measures the signal propagation delay through a selected test circuit. The test circuit is provided with a feedback path so that the test circuit and feedback path together form a free-running oscillator. The oscillator then automatically provides its own test signal that includes alternating rising and falling signal transitions on the test-circuit input node. These signal transitions are counted over a predetermined time period to establish the period of the oscillator. The period of the oscillator is then related to the average signal propagation delay through the test circuit. The invention can be applied to synchronous components that might fail to oscillate by connecting the asynchronous set or clear terminal to the output terminal so that the oscillator oscillates at a frequency determined by the clock-to-out delay of those components.
    Type: Grant
    Filed: July 14, 1998
    Date of Patent: May 15, 2001
    Assignee: Xilinx, Inc.
    Inventors: Robert W. Wells, Robert D. Patrie, Robert O. Conn
  • Patent number: 6219305
    Abstract: A circuit measures the signal propagation delay through a selected test circuit. The test circuit is provided with an inverting feedback path so that the test circuit and feedback path together form a free-running oscillator. The oscillator then automatically provides its own test signal that includes alternating rising and falling signal transitions on the test-circuit input node. These signal transitions are counted over a predetermined time period to establish the average period of the oscillator. Finally, the average period of the oscillator is related to the average signal propagation delay through the test circuit. One embodiment of the invention includes a phase discriminator that samples the output of the oscillator and accumulates data representing the duty cycle of that signal. The duty cycle can then be combined with the average period of the test signal to determine, separately, the delays associated with falling and rising edges propagating through the test circuit.
    Type: Grant
    Filed: July 14, 1998
    Date of Patent: April 17, 2001
    Assignee: Xilinx, Inc.
    Inventors: Robert D. Patrie, Robert W. Wells, Steven P. Young, Christopher H. Kingsley, Daniel Chung, Robert O. Conn
  • Patent number: 6075418
    Abstract: A circuit separately measures a selected one of the rising-edge and falling-edge signal propagation delays through one or more circuits of interest. A number of synchronous components are configured in a loop so that they together form a free-running ring oscillator. Each synchronous component clocks a subsequent synchronous component in the ring; the subsequent synchronous component responds by clocking a later component in the ring and by clearing a previous component to prepare it for a subsequent clock. The oscillator thus produces an oscillating test signal in which the period is proportional to the clock-to-out delays of synchronous components. This proportionality provides an effective means for measuring the clock-to-out delays of those components. Other embodiments include additional asynchronous test circuit paths for which the associated signal propagation delays are of interest.
    Type: Grant
    Filed: January 20, 1999
    Date of Patent: June 13, 2000
    Assignee: Xilinx, Inc.
    Inventors: Christopher H. Kingsley, Robert W. Wells, Robert D. Patrie
  • Patent number: 6069849
    Abstract: A circuit measures the signal propagation delay through a selected test circuit. The test circuit is provided with a feedback path so that the test circuit and feedback path together form a free-running oscillator. The oscillator then automatically provides its own test signal that includes alternating rising and falling signal transitions on the test-circuit input node. These signal transitions are counted over a predetermined time period to establish the average period of the oscillator. Finally, the average period of the oscillator is related to the average signal propagation delay through the test circuit. A phase discriminator samples the output of the oscillator and accumulates data representing the duty cycle of that signal. The duty cycle can then be combined with the average period of the test signal to determine, separately, the delays associated with falling and rising edges propagating through the test circuit.
    Type: Grant
    Filed: July 14, 1998
    Date of Patent: May 30, 2000
    Assignee: Xilinx, Inc.
    Inventors: Christopher H. Kingsley, Robert D. Patrie, Robert W. Wells, Robert O. Conn