Patents by Inventor Robert D. Taylor
Robert D. Taylor has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250238102Abstract: A display system for sensing a finger of a user applied to the display system includes a display panel; a sensor for sensing the finger; a sensing light source configured to emit a first light having a first wavelength W1; and a reflective polarizer disposed between the display panel and the sensor. For a substantially normally incident light, an optical transmittance of the reflective polarizer versus wavelength for a first polarization state has a band edge such that for a first wavelength range extending from a smaller wavelength L1 to a greater wavelength L2 and including W1, where 30 nm?L2?L1?50 nm and L1 is greater than and within about 20 nm of a wavelength L3 corresponding to an optical transmittance of about 50% along the band edge, the optical transmittance has an average of greater than about 75%.Type: ApplicationFiled: April 8, 2025Publication date: July 24, 2025Inventors: Bharat R. Acharya, Robert D. Taylor, Joseph P. Attard, Benjamin J. Forsythe, David T. Yust, Matthew E. Sousa, Jason S. Petaja, Anthony M. Renstrom, William Blake Kolb, Matthew S. Cole, Matthew S. Stay, Matthew R.D. Smith, Jeremy O. Swanson, Tri D. Pham, David A. Rosen, Qunyi Chen, Lisa A. DeNicola, Quinn D. Sanford, Carl A. Stover, Lin Zhao, Gilles J. Benoit
-
Patent number: 12299239Abstract: A display system for sensing a finger of a user applied to the display system includes a display panel; a sensor for sensing the finger; a sensing light source configured to emit a first light having a first wavelength W1; and a reflective polarizer disposed between the display panel and the sensor. For a substantially normally incident light, an optical transmittance of the reflective polarizer versus wavelength for a first polarization state has a band edge such that for a first wavelength range extending from a smaller wavelength L1 to a greater wavelength L2 and including W1, where 30 nm?L2?L1?50 nm and L1 is greater than and within about 20 nm of a wavelength L3 corresponding to an optical transmittance of about 50% along the band edge, the optical transmittance has an average of greater than about 75%.Type: GrantFiled: March 14, 2024Date of Patent: May 13, 2025Assignee: 3M INNOVATIVE PROPERTIES COMPANYInventors: Bharat R. Acharya, Robert D. Taylor, Joseph P. Attard, Benjamin J. Forsythe, David T. Yust, Matthew E. Sousa, Jason S. Petaja, Anthony M. Renstrom, William Blake Kolb, Matthew S. Cole, Matthew S. Stay, Matthew R. D. Smith, Jeremy O. Swanson, Tri D. Pham, David A. Rosen, Qunyi Chen, Lisa A. DeNicola, Quinn D. Sanford, Carl A. Stover, Lin Zhao, Gilles J. Benoit
-
Publication number: 20250076555Abstract: An optical construction includes a reflective polarizer and an optical film. The optical film includes a matrix and a plurality of first particles dispersed in the matrix. Each of the matrix and the plurality of first particles includes a silicone polyoxamide and an acrylate polymer. For substantially normally incident light and for at least a first wavelength in a first wavelength range, the reflective polarizer reflects about 60% for a first polarization state and transmits about 40% for an orthogonal second polarization state. For at least a second wavelength in a second wavelength range, each of the reflective polarizer and the optical film transmits about 60% of an incident light for each of the first and second polarization states. For at least the first wavelength, optical film has an optical haze and a depolarization ratio. A ratio of the depolarization ratio to the optical haze is less than 0.1.Type: ApplicationFiled: November 18, 2024Publication date: March 6, 2025Inventors: Bharat R. Acharya, Brett J. Sitter, Robert D. Taylor, Zhicheng Tian, James P. DiZio, Quinn D. Sanford, Kent C. Hackbarth, Matthew E. Sousa
-
Publication number: 20250035984Abstract: A backlight including a front reflector disposed on a back reflector and defining a cavity therebetween. For a visible wavelength range and for a first incident angle of less than 5 degrees, the front reflector has an average transmittance of less than 20% for the incident light polarized along a first direction, and an average transmittance of between 20% and 85% for the incident light polarized along an orthogonal second direction. For a visible wavelength range and for a second incident angle of greater than 40 degrees, the front reflector has an average transmittance of less than 40% for each of the first and second directions. For at least a first wavelength in an infrared wavelength range, the front reflector has a transmittance of greater than about 40% for each of the first and second incident angles and for each of the first and second directions.Type: ApplicationFiled: October 16, 2024Publication date: January 30, 2025Inventors: Carl A. Stover, Matthew E. Sousa, Bharat R. Acharya, Benjamin J. Forsythe, Robert D. Taylor, Quinn D. Sanford
-
Publication number: 20250020837Abstract: A multilayer partial mirror includes a plurality of alternating first a second polymeric layers numbering at least 50 in total, disposed between, and integrally formed with, opposing first and second polymeric skin layers. For a visible wavelength range extending from about 420 nm to about 680 nm and an incident light propagating in an incident plane that includes a x-direction, and for an s-polarized incident light, the multilayer partial mirror has an average reflectance Rs1 for a first incident angle of less than about 10 degrees, and an average reflectance Rs2 for a second incident angle of greater than about 45 degrees, and for a p-polarized incident light, the multilayer partial mirror has an average reflectance Rp1 for the first incident angle, and an average reflectance Rp2 for the second incident angle. Each of Rs2/Rs1 and Rp2/Rp1 is greater than about 1.15.Type: ApplicationFiled: September 25, 2024Publication date: January 16, 2025Inventors: Adam D. Haag, Gilles J. Benoit, Stephen A. Johnson, Samuel A. Minno, Quinn D. Sanford, Lin Zhao, Robert D. Taylor
-
Patent number: 12147122Abstract: A backlight including a front reflector disposed on a back reflector and defining a cavity therebetween. For a visible wavelength range and for a first incident angle of less than 5 degrees, the front reflector has an average transmittance of less than 20% for the incident light polarized along a first direction, and an average transmittance of between 20% and 85% for the incident light polarized along an orthogonal second direction. For a visible wavelength range and for a second incident angle of greater than 40 degrees, the front reflector has an average transmittance of less than 40% for each of the first and second directions. For at least a first wavelength in an infrared wavelength range, the front reflector has a transmittance of greater than about 40% for each of the first and second incident angles and for each of the first and second directions.Type: GrantFiled: May 17, 2022Date of Patent: November 19, 2024Assignee: 3M INNOVATIVE PROPERTIES COMPANYInventors: Carl A. Stover, Matthew E. Sousa, Bharat R. Acharya, Benjamin J. Forsythe, Robert D. Taylor, Quinn D. Sanford
-
Publication number: 20240377567Abstract: Polarizer stacks are described. More particularly, polarizer stacks that include an absorbing polarizer and multiple reflective polarizers, including at least one collimating reflective polarizer are described. Such polarizer stacks are capable of emitted light that is both collimated and color neutral. Backlights incorporating such polarizer stacks are also described.Type: ApplicationFiled: July 19, 2024Publication date: November 14, 2024Inventors: Adam D. Haag, Timothy J. Nevitt, Michael F. Weber, Robert D. Taylor, Carl A. Stover
-
Patent number: 12130455Abstract: A multilayer partial mirror includes a plurality of alternating first a second polymeric layers numbering at least 50 in total, disposed between, and integrally formed with, opposing first and second polymeric skin layers. For a visible wavelength range extending from about 420 nm to about 680 nm and an incident light propagating in an incident plane that includes a x-direction, and for an s-polarized incident light, the multilayer partial mirror has an average reflectance Rs1 for a first incident angle of less than about 10 degrees, and an average reflectance Rs2 for a second incident angle of greater than about 45 degrees, and for a p-polarized incident light, the multilayer partial mirror has an average reflectance Rp1 for the first incident angle, and an average reflectance Rp2 for the second incident angle. Each of Rs2/Rs1 and Rp2/Rp1 is greater than about 1.15.Type: GrantFiled: June 28, 2022Date of Patent: October 29, 2024Assignee: 3M INNOVATIVE PROPERTIES COMPANYInventors: Adam D. Haag, Gilles J. Benoit, Stephen A. Johnson, Samuel A. Minno, Quinn D. Sanford, Lin Zhao, Robert D. Taylor
-
Patent number: 12078833Abstract: Polarizer stacks are described. More particularly, polarizer stacks that include an absorbing polarizer and multiple reflective polarizers, including at least one collimating reflective polarizer are described. Such polarizer stacks are capable of emitted light that is both collimated and color neutral. Backlights incorporating such polarizer stacks are also described.Type: GrantFiled: October 8, 2020Date of Patent: September 3, 2024Assignee: 3M INNOVATIVE PROPERTIES COMPANYInventors: Adam D. Haag, Timothy J. Nevitt, Michael F. Weber, Robert D. Taylor, Carl A. Stover
-
Publication number: 20240280734Abstract: An optical film includes an optically diffusive layer including a plurality of nanoparticles dispersed between and across opposing first and second major surfaces thereof. The plurality of nanoparticles has a nanoparticle size distribution including distinct first and second peaks at respective nanoparticle sizes d1 and d2, wherein 1.5?d2/d1?10. The optically diffusive layer includes a polymeric material bonding the nanoparticles to each other. For a substantially collimated substantially normally incident light, the optical film has, in a visible wavelength, an average specular transmittance VTs and an average total transmittance VTt, and in an infrared wavelength range, an average total transmittance ITt and an average specular transmittance ITs, wherein 0.3?(VTs/VTt)?0.7, (VTs/ITs)?0.25, and (ITs/ITt)?0.7.Type: ApplicationFiled: June 17, 2022Publication date: August 22, 2024Inventors: Matthew E. Sousa, Jason S. Petaja, Anthony M. Renstrom, William B. Kolb, Robert D. Taylor, Benjamin J. Forsythe
-
Publication number: 20240264339Abstract: A multilayer partial mirror includes a plurality of alternating first a second polymeric layers numbering at least 50 in total, disposed between, and integrally formed with, opposing first and second polymeric skin layers. For a visible wavelength range extending from about 420 nm to about 680 nm and an incident light propagating in an incident plane that includes a x-direction, and for an s-polarized incident light, the multilayer partial mirror has an average reflectance Rs1 for a first incident angle of less than about 10 degrees, and an average reflectance Rs2 for a second incident angle of greater than about 45 degrees, and for a p-polarized incident light, the multilayer partial mirror has an average reflectance Rp1 for the first incident angle, and an average reflectance Rp2 for the second incident angle. Each of Rs2/Rs1 and Rp2/Rp1 is greater than about 1.15.Type: ApplicationFiled: June 28, 2022Publication date: August 8, 2024Inventors: Adam D. Haag, Gilles J. Benoit, Stephen A. Johnson, Samuel A. Minno, Quinn D. Sanford, Lin Zhao, Robert D. Taylor
-
Publication number: 20240256088Abstract: A display system for sensing a finger of a user applied to the display system includes a display panel; a sensor for sensing the finger; a sensing light source configured to emit a first light having a first wavelength W1; and a reflective polarizer disposed between the display panel and the sensor. For a substantially normally incident light, an optical transmittance of the reflective polarizer versus wavelength for a first polarization state has a band edge such that for a first wavelength range extending from a smaller wavelength L1 to a greater wavelength L2 and including W1, where 30 nm?L2?L1?50 nm and L1 is greater than and within about 20 nm of a wavelength L3 corresponding to an optical transmittance of about 50% along the band edge, the optical transmittance has an average of greater than about 75%.Type: ApplicationFiled: March 14, 2024Publication date: August 1, 2024Inventors: Bharat R. Acharya, Robert D. Taylor, Joseph P. Attard, Benjamin J. Forsythe, David T. Yust, Matthew E. Sousa, Jason S. Petaja, Anthony M. Renstrom, William Blake Kolb, Matthew S. Cole, Matthew S. Stay, Matthew R.D. Smith, Jeremy O. Swanson, Tri D. Pham, David A. Rosen, Qunyi Chen, Lisa A. DeNicola, Quinn D. Sanford, Carl A. Stover, Lin Zhao, Gilles J. Benoit
-
Publication number: 20240231154Abstract: A backlight including a front reflector disposed on a back reflector and defining a cavity therebetween. For a visible wavelength range and for a first incident angle of less than 5 degrees, the front reflector has an average transmittance of less than 20% for the incident light polarized along a first direction, and an average transmittance of between 20% and 85% for the incident light polarized along an orthogonal second direction. For a visible wavelength range and for a second incident angle of greater than 40 degrees, the front reflector has an average transmittance of less than 40% for each of the first and second directions. For at least a first wavelength in an infrared wavelength range, the front reflector has a transmittance of greater than about 40% for each of the first and second incident angles and for each of the first and second directions.Type: ApplicationFiled: May 17, 2022Publication date: July 11, 2024Inventors: Carl A. Stover, Matthew E. Sousa, Bharat R. Acharya, Benjamin J. Forsythe, Robert D Taylor, Quinn D. Sanford
-
Publication number: 20240184906Abstract: The present disclosure discloses a system for evaluating the treatment of consumer privacy data by third-party apps using an identifier referring to a third-party application; and a grade assigned to an at least one privacy category. The present disclosure also discloses a method for managing privacy assessments of third-party apps; reviewing primary and secondary source materials concerning treatment of consumer privacy data; facilitating consistent evaluation with rigorous guidelines; and recording the third-party app's consumer privacy data treatment against various criteria by category.Type: ApplicationFiled: December 1, 2022Publication date: June 6, 2024Inventors: Robert D. Taylor, Gregory A. Martin
-
Patent number: 11960683Abstract: A display system for sensing a finger of a user applied to the display system includes a display panel; a sensor for sensing the finger; a sensing light source configured to emit a first light having a first wavelength W1; and a reflective polarizer disposed between the display panel and the sensor. For a substantially normally incident light, an optical transmittance of the reflective polarizer versus wavelength for a first polarization state has a band edge such that for a first wavelength range extending from a smaller wavelength L1 to a greater wavelength L2 and including W1, where 30 nm?L2?L1?50 nm and L1 is greater than and within about 20 nm of a wavelength L3 corresponding to an optical transmittance of about 50% along the band edge, the optical transmittance has an average of greater than about 75%.Type: GrantFiled: May 4, 2021Date of Patent: April 16, 2024Assignee: 3M INNOVATIVE PROPERTIES COMPANYInventors: Bharat R. Acharya, Robert D. Taylor, Joseph P. Attard, Benjamin J. Forsythe, David T. Yust, Matthew E. Sousa, Jason S. Petaja, Anthony M. Renstrom, William Blake Kolb, Matthew S. Cole, Matthew S. Stay, Matthew R. D. Smith, Jeremy O. Swanson, Tri D. Pham, David A. Rosen, Qunyi Chen, Lisa A. DeNicola, Quinn D. Sanford, Carl A. Stover, Lin Zhao, Gilles J. Benoit
-
Publication number: 20240085608Abstract: Optical films are disclosed that include a plurality of interference layers. Each interference layer reflects or transmits light primarily by optical interference. The total number of the interference layers is less than about 1000. For a substantially normally incident light in a predetermined wavelength range, the plurality of interference layers has an average optical transmittance greater than about 85% for a first polarization state, an average optical reflectance greater than about 80% for an orthogonal second polarization state, and an average optical transmittance less than about 0.2% for the second polarization state.Type: ApplicationFiled: November 16, 2023Publication date: March 14, 2024Inventors: Adam D. Haag, Timothy J. Nevitt, Carl A. Stover, Andrew J. Ouderkirk, Robert D. Taylor, Zhaohui Yang
-
Publication number: 20240053522Abstract: An optical construction includes a reflective polarizer and an optical film. The optical film includes a matrix and a plurality of first particles dispersed in the matrix. Each of the matrix and the plurality of first particles includes a silicone polyoxamide and an acrylate polymer. For substantially normally incident light and for at least a first wavelength in a first wavelength range, the reflective polarizer reflects about 60% for a first polarization state and transmits about 40% for an orthogonal second polarization state. For at least a second wavelength in a second wavelength range, each of the reflective polarizer and the optical film transmits about 60% of an incident light for each of the first and second polarization states. For at least the first wavelength, optical film has an optical haze and a depolarization ratio. A ratio of the depolarization ratio to the optical haze is less than 0.1.Type: ApplicationFiled: November 2, 2021Publication date: February 15, 2024Inventors: Bharat R. Acharya, Brett J. Sitter, Robert D. Taylor, Zhicheng Tian, James P. DiZio, Quinn D. Sanford, Kent C. Hackbarth, Matthew E. Sousa
-
Patent number: 11885999Abstract: An optical construction includes a reflective polarizer and an optically diffusive film disposed on the reflective polarizer. The reflective polarizer includes an outer layer including a plurality of first particles partially protruding from a first major surface thereof to form a structured major surface. A first optically diffusive layer is conformably disposed on the structured major surface. The optically diffusive film includes a second optically diffusive layer including a plurality of nanoparticles dispersed therein, and a structured layer including a structured major surface. For a substantially normally incident light and a visible wavelength range from about 450 nm to about 650 nm and an infrared wavelength range from about 930 nm to about 970 nm, the second optically diffusive layer has an average specular transmittance Vs in the visible wavelength range and an average specular transmittance Is in the infrared wavelength range, where Is/Vs?2.5.Type: GrantFiled: May 4, 2021Date of Patent: January 30, 2024Assignee: 3M INNOVATION PROPERTIES COMPANYInventors: Bharat R. Acharya, Robert D. Taylor, Joseph P. Attard, Benjamin J. Forsythe, David T. Yust, Matthew E. Sousa, Jason S. Petaja, Anthony M. Renstrom, William Blake Kolb, Matthew S. Cole, Matthew S. Stay, Matthew R.D. Smith, Jeremy O. Swanson, Tri D. Pham, David A. Rosen, Qunyi Chen, Lisa A. DeNicola, Quinn D. Sanford, Carl A. Stover, Lin Zhao, Gilles J. Benoit
-
Patent number: 11880104Abstract: A reflective polarizer has a transmittance for a first polarization state having a band edge separating a first wavelength range extending at least from about 450 nm to about 900 nm and a second wavelength range extending at least from about 1100 nm to about 1300 nm. For the first polarization state, the reflective polarizer has an average transmittance in the first wavelength range less than about 10% and an average transmittance in the second wavelength range greater than about 80%; and for a second polarization state, the reflective polarizer has an average transmittance in the first wavelength range greater than about 40% and an average transmittance in the second wavelength range greater than about 80%. A display system includes the reflective polarizer and an infrared light source configured to emit an infrared light having a wavelength W1. The band edge has a band edge wavelength W2>W1.Type: GrantFiled: September 10, 2021Date of Patent: January 23, 2024Assignee: 3M INNOVATIVE PROPERTIES COMPANYInventors: Carl A Stover, Robert D. Taylor, Bharat R. Acharya
-
Patent number: 11846792Abstract: Optical films are disclosed that include a plurality of interference layers. Each interference layer reflects or transmits light primarily by optical interference. The total number of the interference layers is less than about 1000. For a substantially normally incident light in a predetermined wavelength range, the plurality of interference layers has an average optical transmittance greater than about 85% for a first polarization state, an average optical reflectance greater than about 80% for an orthogonal second polarization state, and an average optical transmittance less than about 0.2% for the second polarization state.Type: GrantFiled: September 23, 2021Date of Patent: December 19, 2023Assignee: 3M INNOVATIVE PROPERTIES COMPANYInventors: Adam D. Haag, Timothy J. Nevitt, Carl A. Stover, Andrew J. Ouderkirk, Robert D. Taylor, Zhaohui Yang