Patents by Inventor Robert Deuchars

Robert Deuchars has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9577590
    Abstract: A direct current (DC)-DC converter, which includes a charge pump buck power supply and a buck power supply is disclosed. The charge pump buck power supply includes a charge pump buck converter, a first inductive element, and an energy storage element. The charge pump buck converter and the first inductive element are coupled in series between a DC power supply, such as a battery, and the energy storage element. The buck power supply includes a buck converter, a second inductive element, and the energy storage element. The buck converter and the second inductive element are coupled in series between the DC power supply and the energy storage element. As such, the charge pump buck power supply and the buck power supply share the energy storage element.
    Type: Grant
    Filed: July 9, 2013
    Date of Patent: February 21, 2017
    Assignee: Qorvo US, Inc.
    Inventors: Chris Levesque, Jean-Christophe Berchtold, Joseph Hubert Colles, Robert Deuchars, William David Southcombe, David Zimlich, David E. Jones, Scott Yoder, Terry J. Stockert
  • Patent number: 9214865
    Abstract: The present disclosure relates to a flexible direct current (DC)-DC converter, which includes a charge pump buck power supply and a buck power supply. The charge pump buck power supply and the buck power supply are voltage compatible with one another at respective output inductance nodes to provide flexibility. In one embodiment of the DC-DC converter, capacitances at the output inductance nodes are at least partially isolated from one another by using at least an isolating inductive element between the output inductance nodes to increase efficiency. In an alternate embodiment of the DC-DC converter, the output inductance nodes are coupled to one another, such that the charge pump buck power supply and the buck power supply share a first inductive element, thereby eliminating the isolating inductive element, which reduces size and cost but may also reduce efficiency.
    Type: Grant
    Filed: September 7, 2011
    Date of Patent: December 15, 2015
    Assignee: RF Micro Devices, Inc.
    Inventors: Chris Levesque, Jean-Christophe Berchtold, Joseph Hubert Colles, Robert Deuchars, William David Southcombe, David Zimlich, David E. Jones, Scott Yoder, Terry J. Stockert
  • Patent number: 8811920
    Abstract: A direct current (DC)-DC converter having a DC-DC converter semiconductor die and an alpha flying capacitive element is disclosed. The DC-DC converter semiconductor die includes a first series alpha switching element, a second series alpha switching element, a first alpha flying capacitor connection node, which is about over the second series alpha switching element, and a second alpha flying capacitor connection node, which is about over the first series alpha switching element. The alpha flying capacitive element is electrically coupled between the first alpha flying capacitor connection node and the second alpha flying capacitor connection node. By locating the first alpha flying capacitor connection node and the second alpha flying capacitor connection node about over the second series alpha switching element and the first series alpha switching element, respectively, lengths of transient current paths may be minimized, thereby reducing noise and potential interference.
    Type: Grant
    Filed: November 2, 2011
    Date of Patent: August 19, 2014
    Assignee: RF Micro Devices, Inc.
    Inventors: Robert Deuchars, Jean-Christophe Berchtold, Joseph Hubert Colles, David Zimlich, Chris Levesque, William David Southcombe, David E. Jones, Scott Yoder, Terry J. Stockert
  • Publication number: 20130293310
    Abstract: A direct current (DC)-DC converter, which includes a charge pump buck power supply and a buck power supply is disclosed. The charge pump buck power supply includes a charge pump buck converter, a first inductive element, and an energy storage element. The charge pump buck converter and the first inductive element are coupled in series between a DC power supply, such as a battery, and the energy storage element. The buck power supply includes a buck converter, a second inductive element, and the energy storage element. The buck converter and the second inductive element are coupled in series between the DC power supply and the energy storage element. As such, the charge pump buck power supply and the buck power supply share the energy storage element.
    Type: Application
    Filed: July 9, 2013
    Publication date: November 7, 2013
    Inventors: Chris Levesque, Jean-Christophe Berchtold, Joseph Hubert Colles, Robert Deuchars, William David Southcombe, David Zimlich, David E. Jones, Scott Yoder, Terry J. Stockert
  • Publication number: 20120313173
    Abstract: Buried implants are used to reduce RF (radio-frequency) coupling in a SOI (Silicon-on-insulator) circuit. These buried implants are located above and/or below the BOX (buried oxide) layer of the SOI circuit. These buried implants may completely enclose the PWELL (P-type well) of an NFET (N-type Field Effect Transistor).
    Type: Application
    Filed: June 7, 2012
    Publication date: December 13, 2012
    Applicant: RF MICRO DEVICES, INC.
    Inventors: Carl Dickey, Nathaniel Peachey, Robert Deuchars
  • Publication number: 20120280746
    Abstract: A direct current (DC)-DC converter having a DC-DC converter semiconductor die and an alpha flying capacitive element is disclosed. The DC-DC converter semiconductor die includes a first series alpha switching element, a second series alpha switching element, a first alpha flying capacitor connection node, which is about over the second series alpha switching element, and a second alpha flying capacitor connection node, which is about over the first series alpha switching element. The alpha flying capacitive element is electrically coupled between the first alpha flying capacitor connection node and the second alpha flying capacitor connection node. By locating the first alpha flying capacitor connection node and the second alpha flying capacitor connection node about over the second series alpha switching element and the first series alpha switching element, respectively, lengths of transient current paths may be minimized, thereby reducing noise and potential interference.
    Type: Application
    Filed: November 2, 2011
    Publication date: November 8, 2012
    Applicant: RF MICRO DEVICES, INC.
    Inventors: Robert Deuchars, Jean-Christophe Berchtold, Joseph Hubert Colles, David Zimlich, Chris Levesque, William David Southcombe, David E. Jones, Scott Yoder, Terry J. Stockert
  • Publication number: 20120062205
    Abstract: The present disclosure relates to a flexible direct current (DC)-DC converter, which includes a charge pump buck power supply and a buck power supply. The charge pump buck power supply and the buck power supply are voltage compatible with one another at respective output inductance nodes to provide flexibility. In one embodiment of the DC-DC converter, capacitances at the output inductance nodes are at least partially isolated from one another by using at least an isolating inductive element between the output inductance nodes to increase efficiency. In an alternate embodiment of the DC-DC converter, the output inductance nodes are coupled to one another, such that the charge pump buck power supply and the buck power supply share a first inductive element, thereby eliminating the isolating inductive element, which reduces size and cost but may also reduce efficiency.
    Type: Application
    Filed: September 7, 2011
    Publication date: March 15, 2012
    Applicant: RF Micro Devices, Inc.
    Inventors: Chris Levesque, Jean-Christophe Berchtold, Joseph Hubert Colles, Robert Deuchars, William David Southcombe, David Zimlich, David E. Jones, Scott Yoder, Terry J. Stockert