Patents by Inventor Robert Dobkin
Robert Dobkin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12123764Abstract: A system for adjusting the firmness of a substrate configured to support a subject includes a first rod configured to be movable by a mechanism, a second rod parallel to and spaced from the first rod a distance that spans a majority of a dimension of the substrate, and flexible straps extending between the first rod and the second rod and attached to the first rod and the second rod at respective ends of each flexible strap. The mechanism is configured to move the first rod in a first direction to increase tension on the flexible straps and move the first rod in a second direction to decrease tension on the flexible straps. The mechanism can be manually operated by the subject or can be a motor that is controlled by a controller.Type: GrantFiled: October 4, 2022Date of Patent: October 22, 2024Assignee: Sleep Number CorporationInventors: Steven Jay Young, Carl Hewitt, Jonathan M. Olson, Alan Luckow, Robert Dobkin
-
Patent number: 12119639Abstract: An integrated circuit (IC) heater circuit comprises a drive circuit configured to increase the temperature of the IC when consuming power; a temperature sensor coupled to a control node of the drive circuit to activate and deactivate the drive circuit to provide an ambient temperature for the IC, wherein current of the temperature sensor varies with temperature; and a control circuit coupled to the temperature sensor and configured to adjust variation in the temperature sensitivity of the current of the temperature sensor.Type: GrantFiled: June 26, 2023Date of Patent: October 15, 2024Assignee: Analog Devices International Unlimited CompanyInventors: Aref Kahaei, James Vincent Sousae, Carl T. Nelson, Robert Dobkin
-
Publication number: 20230352928Abstract: An integrated circuit (IC) heater circuit comprises a drive circuit configured to increase the temperature of the IC when consuming power; a temperature sensor coupled to a control node of the drive circuit to activate and deactivate the drive circuit to provide an ambient temperature for the IC, wherein current of the temperature sensor varies with temperature; and a control circuit coupled to the temperature sensor and configured to adjust variation in the temperature sensitivity of the current of the temperature sensor.Type: ApplicationFiled: June 26, 2023Publication date: November 2, 2023Inventors: Aref Kahaei, James Vincent Sousae, Carl T. Nelson, Robert Dobkin
-
Publication number: 20230273066Abstract: A system for measuring data specific to a subject using gravity comprises a substrate on which a subject lies, the substrate having multiple legs extending from the substrate to a floor to support the substrate, and load sensor assemblies. Each load sensor assembly is associated with a respective leg and comprises a cap configured to receive a load from the substrate, a base configured to provide contact with the floor, the base and cap configured to fit together to maintain alignment of the cap to the base while allowing vertical movement of the cap, a load cell between the base and the cap, one of the base and cap configured to translate the load to the load cell and a printed circuit board that processes and outputs data from the load cell, wherein a combination of all load sensor assemblies receive an entire load to which the substrate is subjected.Type: ApplicationFiled: October 4, 2022Publication date: August 31, 2023Inventors: Steven Jay Young, Carl Hewitt, Jonathan M. Olson, Alan Luckow, Robert Dobkin
-
Patent number: 11735902Abstract: An integrated circuit (IC) heater circuit comprises a drive circuit configured to increase the temperature of the IC when consuming power; a temperature sensor coupled to a control node of the drive circuit to activate and deactivate the drive circuit to provide an ambient temperature for the IC, wherein current of the temperature sensor varies with temperature; and a control circuit coupled to the temperature sensor and configured to adjust variation in the temperature sensitivity of the current of the temperature sensor.Type: GrantFiled: March 24, 2020Date of Patent: August 22, 2023Assignee: ANALOG DEVICES INTERNATIONAL UNLIMITED COMPANYInventors: Aref Kahaei, James Vincent Sousae, Carl T. Nelson, Robert Dobkin
-
Patent number: 11730917Abstract: Gamma brain stimulation for preventing or treating Alzheimer's disease or sleeping disorders using light or sound is known. A strobing 40 Hz light source has been shown to cause positive effects due to the stimulation. It is an advantage to know the actual dosage of light that enters the person's eyes in order to understand the relationship between dosage and effectiveness. A camera is used to detect the subject's gaze angle, distance, pupil diameter and any other factors that affect the light power that enters the eye. A target dosage is first determined by a medical worker, such as to determine the effects of the exact same dosage on a group of similar persons, such as Alzheimer's patients. With deviations of gaze angle, distance, and pupil size from the ideal, the effective dosage is decreased. The disclosed system adjusts the actual dosage, such as session duration, based on such factors so that the final dosage received by the person is consistent and meets the target dosage.Type: GrantFiled: October 29, 2020Date of Patent: August 22, 2023Assignee: Optoceutics ApSInventors: Marcus Carstensen, Paul Michael Petersen, Jes Broeng, Mark Henney, Ngoc Mai Nguyen, Robert Dobkin
-
Publication number: 20230021928Abstract: A system for adjusting the firmness of a substrate configured to support a subject includes a first rod configured to be movable by a mechanism, a second rod parallel to and spaced from the first rod a distance that spans a majority of a dimension of the substrate, and flexible straps extending between the first rod and the second rod and attached to the first rod and the second rod at respective ends of each flexible strap. The mechanism is configured to move the first rod in a first direction to increase tension on the flexible straps and move the first rod in a second direction to decrease tension on the flexible straps. The mechanism can be manually operated by the subject or can be a motor that is controlled by a controller.Type: ApplicationFiled: October 4, 2022Publication date: January 26, 2023Inventors: Steven Jay Young, Carl Hewitt, Jonathan M. Olson, Alan Luckow, Robert Dobkin
-
Publication number: 20220134047Abstract: Gamma brain stimulation for preventing or treating Alzheimer's disease or sleeping disorders using light or sound is known. A strobing 40 Hz light source has been shown to cause positive effects due to the stimulation. It is an advantage to know the actual dosage of light that enters the person's eyes in order to understand the relationship between dosage and effectiveness. A camera is used to detect the subject's gaze angle, distance, pupil diameter and any other factors that affect the light power that enters the eye. A target dosage is first determined by a medical worker, such as to determine the effects of the exact same dosage on a group persons, such as Alzheimer's patients. With deviations of gaze angle, distance, and pupil size from the ideal, the effective dosage is decreased. The disclosed system adjusts the actual dosage, such as session duration, based on such factors so that the final dosage received by the person is consistent and meets the target dosage.Type: ApplicationFiled: October 29, 2020Publication date: May 5, 2022Inventors: Marcus Carstensen, Paul Michael Petersen, Jes Broeng, Mark Henney, Ngoc Mai Nguyen, Robert Dobkin
-
Publication number: 20210305804Abstract: An integrated circuit (IC) heater circuit comprises a drive circuit configured to increase the temperature of the IC when consuming power; a temperature sensor coupled to a control node of the drive circuit to activate and deactivate the drive circuit to provide an ambient temperature for the IC, wherein current of the temperature sensor varies with temperature; and a control circuit coupled to the temperature sensor and configured to adjust variation in the temperature sensitivity of the current of the temperature sensor.Type: ApplicationFiled: March 24, 2020Publication date: September 30, 2021Inventors: Aref Kahaei, James Vincent Sousae, Carl T. Nelson, Robert Dobkin
-
Patent number: 10914789Abstract: A battery system monitor includes cell measurement circuits (CMCs) that each measure a voltage at or current through a pair of terminals of a respective associated battery module from among a plurality of plurality of battery modules in a battery system. Wireless communication transceivers (WCTs), each associated with a different CMC, transmit voltage or current measurement information of the associated CMC across a wireless communication link. A controller receives the voltage or current measurement information from the wireless communication transceivers for monitoring the state of operation of the battery system. Battery system monitoring is improved through synchronization of clocks in different CMCs or WCTs to enable synchronous sampling of multiple battery modules, through systems for determining relative positions of battery modules in a series coupling of battery modules between terminals of the battery system, and through improvements to the reliability of wireless communication.Type: GrantFiled: June 28, 2017Date of Patent: February 9, 2021Assignee: Analog Devices International Unlimited CompanyInventors: Mark Alan Lemkin, Alain Pierre Levesque, Brett Warneke, David McLean Dwelley, Erik Soule, Lance Robert Doherty, Gordon Alexander Charles, Thor Nelson Juneau, Jonathan Noah Simon, Robert Dobkin
-
Publication number: 20200253383Abstract: A system for adjusting the firmness of a substrate configured to support a subject includes a first rod configured to be movable by a mechanism, a second rod parallel to and spaced from the first rod a distance that spans a majority of a dimension of the substrate, and flexible straps extending between the first rod and the second rod and attached to the first rod and the second rod at respective ends of each flexible strap. The mechanism is configured to move the first rod in a first direction to increase tension on the flexible straps and move the first rod in a second direction to decrease tension on the flexible straps. The mechanism can be manually operated by the subject or can be a motor that is controlled by a controller.Type: ApplicationFiled: January 30, 2020Publication date: August 13, 2020Inventors: Steven Jay Young, Carl Hewitt, Jonathan M. Olson, Alan Luckow, Robert Dobkin
-
Publication number: 20200107753Abstract: A system for measuring data specific to a subject using gravity comprises a substrate on which a subject lies, the substrate having multiple legs extending from the substrate to a floor to support the substrate, and load sensor assemblies. Each load sensor assembly is associated with a respective leg and comprises a cap configured to receive a load from the substrate, a base configured to provide contact with the floor, the base and cap configured to fit together to maintain alignment of the cap to the base while allowing vertical movement of the cap, a load cell between the base and the cap, one of the base and cap configured to translate the load to the load cell and a printed circuit board that processes and outputs data from the load cell, wherein a combination of all load sensor assemblies receive an entire load to which the substrate is subjected.Type: ApplicationFiled: August 26, 2019Publication date: April 9, 2020Inventors: Steven Jay Young, Carl Hewitt, Jonathan Olson, Alan Luckow, Robert Dobkin
-
Publication number: 20190242949Abstract: A battery system monitor includes cell measurement circuits (CMCs) that each measure a voltage at or current through a pair of terminals of a respective associated battery module from among a plurality of plurality of battery modules in a battery system. Wireless communication transceivers (WCTs), each associated with a different CMC, transmit voltage or current measurement information of the associated CMC across a wireless communication link. A controller receives the voltage or current measurement information from the wireless communication transceivers for monitoring the state of operation of the battery system. Battery system monitoring is improved through synchronization of clocks in different CMCs or WCTs to enable synchronous sampling of multiple battery modules, through systems for determining relative positions of battery modules in a series coupling of battery modules between terminals of the battery system, and through improvements to the reliability of wireless communication.Type: ApplicationFiled: June 28, 2017Publication date: August 8, 2019Inventors: Mark Alan Lemkin, Alain Pierre Levesque, Brett Warneke, David McLean Dwelley, Erik Soule, Lance Robert Doherty, Gordon Charles, Thor Nelson Juneau, Jonathan Noah Simon, Robert Dobkin
-
Patent number: 9348347Abstract: In one embodiment, a regulator circuit for generating a regulated output voltage Vout has an error amplifier using a pair of bipolar transistors at its front end. The error amplifier compares the regulated output voltage to a reference voltage Vref. A precision current source draws a first current through a user-selected set resistance to generate the desired Vref. The regulator circuit controls a power stage to cause Vout to be equal to Vref. The base current into one of the bipolar transistors normally distorts the current through the set resistance. A base current compensation circuit is coupled to the current source to adjust the first current by a value equal to the base current to offset the base current. Therefore, Vref is not affected by the base current. The error amplifier may be in a linear regulator or a switching regulator. The compensation circuit may be used in other applications.Type: GrantFiled: August 19, 2013Date of Patent: May 24, 2016Assignee: Linear Technology CorporationInventors: Robert Dobkin, Amitkumar Pravin Patel
-
Patent number: 9152158Abstract: A linear regulator integrated circuit may be formed having four external terminals including a voltage input (Vin) terminal, a voltage output (Vout) terminal, a Set terminal, and an operational amplifier (op amp) power terminal. A user connects an external resistor to the Set terminal for creating a reference voltage. An op amp controls a pass (or series transistor) to cause an output voltage at the Vout terminal to equal the reference voltage. The op amp has a first power supply terminal internally coupled to the Vin terminal and a second power supply terminal coupled to the op amp power terminal. The op amp power terminal allows a user to externally couple the op amp second power supply terminal to either the Vout pin (for high voltage applications), system ground (for medium voltage applications), or another voltage (to provide additional headroom in very low voltage applications).Type: GrantFiled: August 19, 2013Date of Patent: October 6, 2015Assignee: Linear Technology CorporationInventors: Robert Dobkin, Amitkumar Pravin Patel
-
Publication number: 20140312865Abstract: In one embodiment, a regulator circuit for generating a regulated output voltage Vout has an error amplifier using a pair of bipolar transistors at its front end. The error amplifier compares the regulated output voltage to a reference voltage Vref. A precision current source draws a first current through a user-selected set resistance to generate the desired Vref. The regulator circuit controls a power stage to cause Vout to be equal to Vref. The base current into one of the bipolar transistors normally distorts the current through the set resistance. A base current compensation circuit is coupled to the current source to adjust the first current by a value equal to the base current to offset the base current. Therefore, Vref is not affected by the base current. The error amplifier may be in a linear regulator or a switching regulator. The compensation circuit may be used in other applications.Type: ApplicationFiled: August 19, 2013Publication date: October 23, 2014Applicant: Linear Technology CorporationInventors: Robert Dobkin, Amitkumar Pravin Patel
-
Publication number: 20140312866Abstract: A linear regulator integrated circuit may be formed having four external terminals including a voltage input (Vin) terminal, a voltage output (Vout) terminal, a Set terminal, and an operational amplifier (op amp) power terminal. A user connects an external resistor to the Set terminal for creating a reference voltage. An op amp controls a pass (or series transistor) to cause an output voltage at the Vout terminal to equal the reference voltage. The op amp has a first power supply terminal internally coupled to the Vin terminal and a second power supply terminal coupled to the op amp power terminal. The op amp power terminal allows a user to externally couple the op amp second power supply terminal to either the Vout pin (for high voltage applications), system ground (for medium voltage applications), or another voltage (to provide additional headroom in very low voltage applications).Type: ApplicationFiled: August 19, 2013Publication date: October 23, 2014Applicant: Linear Technology CorporationInventors: Robert Dobkin, Amitkumar Pravin Patel
-
Patent number: 8754622Abstract: An automatic voltage compensation circuit in a voltage regulator compensates the output voltage for a voltage drop along lines leading to a remote load. A load capacitor is connected across the load for providing a low impedance across the load during a test phase of the regulator. In one embodiment, during the test phase, the load current is changed up or down a small percentage (e.g., 10%). As a result, the regulator voltage changes due only to the line resistance since the load is bypassed by the load capacitor. The voltage drop at full load current is then derived by detecting the change in regulator output voltage (a fractional voltage drop) and multiplying it. The normal mode is resumed, and the derived voltage drop is added to the regulator output by either compensating the feedback loop or by adding the voltage drop to the output of the regulator.Type: GrantFiled: October 30, 2009Date of Patent: June 17, 2014Assignee: Linear Technology CorporationInventors: Robert Dobkin, Thomas P. Hack, Yuhui Chen
-
Publication number: 20110101937Abstract: An automatic voltage compensation circuit in a voltage regulator compensates the output voltage for a voltage drop along lines leading to a remote load. A load capacitor is connected across the load for providing a low impedance across the load during a test phase of the regulator. In one embodiment, during the test phase, the load current is changed up or down a small percentage (e.g., 10%). As a result, the regulator voltage changes due only to the line resistance since the load is bypassed by the load capacitor. The voltage drop at full load current is then derived by detecting the change in regulator output voltage (a fractional voltage drop) and multiplying it. The normal mode is resumed, and the derived voltage drop is added to the regulator output by either compensating the feedback loop or by adding the voltage drop to the output of the regulator.Type: ApplicationFiled: October 30, 2009Publication date: May 5, 2011Applicant: LINEAR TECHNOLOGY CORPORATIONInventors: Robert Dobkin, Thomas P. Hack, Yuhui Chen
-
Patent number: 7290323Abstract: A fingerprint-sensing device with a sensor array that does not use active switching elements is fabricated on a base. Sensor support integrated circuits, which contain processing and addressing circuitry, are separately fabricated and subsequently mounted on the base, establishing electrical connections with an interconnect structure within the base, and are thus not integrated with the sensor array. The sensor support integrated circuits can be covered by a bezel structure and the sensor array by a covering material. In addition, a connection cable can be provided to connect the sensor array and the sensor support integrated circuits with a power source and to other external devices and to convey signals generated by the sensor array to the external devices.Type: GrantFiled: November 14, 2003Date of Patent: November 6, 2007Assignee: Fidelica Microsystems, Inc.Inventors: Keith T. Deconde, Srinivasan K. Ganapathi, Randolph S. Gluck, Steve H. Hovey, Shiva Prakash, Robert Dobkin