Patents by Inventor Robert Dubrow

Robert Dubrow has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10707371
    Abstract: Highly luminescent nanostructures, particularly highly luminescent quantum dots, are provided. The nanostructures have high photoluminescence quantum yields and in certain embodiments emit light at particular wavelengths and have a narrow size distribution. The nanostructures can comprise ligands, including C5-C8 carboxylic acid ligands employed during shell formation and/or dicarboxylic or polycarboxylic acid ligands provided after synthesis. Processes for producing such highly luminescent nanostructures are also provided, including methods for enriching nanostructure cores with indium and techniques for shell synthesis.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: July 7, 2020
    Assignee: Nanosys, Inc.
    Inventors: Wenzhuo Guo, Jian Chen, Robert Dubrow, William P. Freeman
  • Publication number: 20190210020
    Abstract: Nanofluidic chips are described herein that are configured for high-volume manufacturing and maintaining sample integrity in multiplexed devices comprising: at least two devices, wherein each device comprises at least one sample inlet and at least one nanochannel; and a detection region, wherein the at least two devices pass through the detection region and wherein the at least two devices are fluidically distinct from the inlet through the detection region, and wherein actuation energy can be applied independently to at least two devices.
    Type: Application
    Filed: January 3, 2019
    Publication date: July 11, 2019
    Inventors: Jeff KROGMEIER, Hardeep SINGH, Robert DUBROW, Laurent MENARD, Andrew GOLDEN, Samrudhi SHARMA
  • Publication number: 20180155623
    Abstract: Highly luminescent nanostructures, particularly highly luminescent quantum dots, are provided. The nanostructures have high photoluminescence quantum yields and in certain embodiments emit light at particular wavelengths and have a narrow size distribution. The nanostructures can comprise ligands, including C5-C8 carboxylic acid ligands employed during shell formation and/or dicarboxylic or polycarboxylic acid ligands provided after synthesis. Processes for producing such highly luminescent nanostructures are also provided, including methods for enriching nanostructure cores with indium and techniques for shell synthesis.
    Type: Application
    Filed: December 22, 2017
    Publication date: June 7, 2018
    Applicant: Nanosys, Inc.
    Inventors: Wenzhuo GUO, Jian CHEN, Robert DUBROW, William P. FREEMAN
  • Patent number: 9884993
    Abstract: Highly luminescent nanostructures, particularly highly luminescent quantum dots, are provided. The nanostructures have high photoluminescence quantum yields and in certain embodiments emit light at particular wavelengths and have a narrow size distribution. The nanostructures can comprise ligands, including C5-C8 carboxylic acid ligands employed during shell formation and/or dicarboxylic or polycarboxylic acid ligands provided after synthesis. Processes for producing such highly luminescent nanostructures are also provided, including methods for enriching nanostructure cores with indium and techniques for shell synthesis.
    Type: Grant
    Filed: September 28, 2015
    Date of Patent: February 6, 2018
    Assignee: NANOSYS, INC.
    Inventors: Wenzhuo Guo, Jian Chen, Robert Dubrow, William P. Freeman
  • Patent number: 9685583
    Abstract: Highly luminescent nanostructures, particularly highly luminescent quantum dots, are provided. The nanostructures have high photoluminescence quantum yields and in certain embodiments emit light at particular wavelengths and have a narrow size distribution. The nanostructures can comprise ligands, including C5-C8 carboxylic acid ligands employed during shell formation and/or dicarboxylic or polycarboxylic acid ligands provided after synthesis. Processes for producing such highly luminescent nanostructures are also provided, including methods for enriching nanostructure cores with indium and techniques for shell synthesis.
    Type: Grant
    Filed: March 26, 2015
    Date of Patent: June 20, 2017
    Assignee: NANOSYS, Inc.
    Inventors: Wenzhuo Guo, Jian Chen, Robert Dubrow, William P. Freeman
  • Patent number: 9631141
    Abstract: Highly luminescent nanostructures, particularly highly luminescent quantum dots, are provided. The nanostructures have high photoluminescence quantum yields and in certain embodiments emit light at particular wavelengths and have a narrow size distribution. The nanostructures can comprise ligands, including C5-C8 carboxylic acid ligands employed during shell formation and/or dicarboxylic or polycarboxylic acid ligands provided after synthesis. Processes for producing such highly luminescent nanostructures are also provided, including methods for enriching nanostructure cores with indium and techniques for shell synthesis.
    Type: Grant
    Filed: March 26, 2015
    Date of Patent: April 25, 2017
    Assignee: Nanosys, Inc.
    Inventors: Wenzhuo Guo, Jian Chen, Robert Dubrow, William P. Freeman
  • Publication number: 20160096992
    Abstract: Highly luminescent nanostructures, particularly highly luminescent quantum dots, are provided. The nanostructures have high photoluminescence quantum yields and in certain embodiments emit light at particular wavelengths and have a narrow size distribution. The nanostructures can comprise ligands, including C5-C8 carboxylic acid ligands employed during shell formation and/or dicarboxylic or polycarboxylic acid ligands provided after synthesis. Processes for producing such highly luminescent nanostructures are also provided, including methods for enriching nanostructure cores with indium and techniques for shell synthesis.
    Type: Application
    Filed: September 28, 2015
    Publication date: April 7, 2016
    Applicant: Nanosys, Inc.
    Inventors: Wenzhuo Guo, Jian Chen, Robert Dubrow, William P. Freeman
  • Patent number: 9260655
    Abstract: Quantum-dot binding ligands with easy to synthesize alkyl-acids are provided. The quantum-dot binding ligands include a multiplicity of carboxy binding ligands in combination with an alkyl backbone, and optionally a solubilizing group. The ligands and coated nanostructures of the present invention are useful for close packed nanostructure compositions, which can have improved quantum confinement and/or reduced cross-talk between nanostructures.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: February 16, 2016
    Assignee: Nanosys, Inc.
    Inventors: William P. Freeman, Paul T. Furuta, Robert Dubrow
  • Patent number: 9169435
    Abstract: Highly luminescent nanostructures, particularly highly luminescent quantum dots, are provided. The nanostructures have high photoluminescence quantum yields and in certain embodiments emit light at particular wavelengths and have a narrow size distribution. The nanostructures can comprise ligands, including C5-C8 carboxylic acid ligands employed during shell formation and/or dicarboxylic or polycarboxylic acid ligands provided after synthesis. Processes for producing such highly luminescent nanostructures are also provided, including methods for enriching nanostructure cores with indium and techniques for shell synthesis.
    Type: Grant
    Filed: June 13, 2013
    Date of Patent: October 27, 2015
    Assignee: Nanosys, Inc.
    Inventors: Wenzhuo Guo, Jian Chen, Robert Dubrow, William P. Freeman
  • Patent number: 9139770
    Abstract: Siloxane polymer ligands for binding to quantum dots are provided. The polymers include a multiplicity of amine or carboxy binding ligands in combination with long-alkyl chains providing improved stability for the ligated quantum dots. The ligands and coated nanostructures of the present invention are useful for close packed nanostructure compositions, which can have improved quantum confinement and/or reduced cross-talk between nano structures.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: September 22, 2015
    Assignee: Nanosys, Inc.
    Inventors: William P. Freeman, Paul T. Furuta, Wendy Guo, Robert Dubrow, J. Wallace Parce
  • Patent number: 9133394
    Abstract: Quantum-dot binding ligands with silsesquioxane moieties are provided. The quantum-dot binding ligands include a multiplicity of amine or carboxy binding ligands in combination with silsesquioxane moieties providing improved stability for the ligated quantum dots. The ligands and coated nanostructures of the present invention are useful for close packed nanostructure compositions, which can have improved quantum confinement and/or reduced cross-talk between nanostructures.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: September 15, 2015
    Assignee: Nanosys, Inc.
    Inventors: William P. Freeman, Paul T. Furuta, Robert Dubrow, J. Wallace Parce
  • Publication number: 20150236195
    Abstract: Highly luminescent nanostructures, particularly highly luminescent quantum dots, are provided. The nanostructures have high photoluminescence quantum yields and in certain embodiments emit light at particular wavelengths and have a narrow size distribution. The nanostructures can comprise ligands, including C5-C8 carboxylic acid ligands employed during shell formation and/or dicarboxylic or polycarboxylic acid ligands provided after synthesis. Processes for producing such highly luminescent nanostructures are also provided, including methods for enriching nanostructure cores with indium and techniques for shell synthesis.
    Type: Application
    Filed: March 26, 2015
    Publication date: August 20, 2015
    Applicant: NANOSYS, Inc.
    Inventors: Wenzhuo GUO, Jian Chen, Robert Dubrow, William P. Freeman
  • Publication number: 20150232756
    Abstract: Highly luminescent nanostructures, particularly highly luminescent quantum dots, are provided. The nanostructures have high photoluminescence quantum yields and in certain embodiments emit light at particular wavelengths and have a narrow size distribution. The nanostructures can comprise ligands, including C5-C8 carboxylic acid ligands employed during shell formation and/or dicarboxylic or polycarboxylic acid ligands provided after synthesis. Processes for producing such highly luminescent nanostructures are also provided, including methods for enriching nanostructure cores with indium and techniques for shell synthesis.
    Type: Application
    Filed: March 26, 2015
    Publication date: August 20, 2015
    Applicant: Nanosys, Inc.
    Inventors: Wenzhuo GUO, Jian Chen, Robert Dubrow, William P. Freeman
  • Patent number: 9005480
    Abstract: The present invention describes a solventless ligand exchange using a siloxane polymer having a binding ligand that displaces the binding ligand on a quantum dot material.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: April 14, 2015
    Assignee: Nanosys, Inc.
    Inventors: Paul T. Furuta, Robert Dubrow
  • Publication number: 20140275598
    Abstract: Quantum-dot binding ligands with silsesquioxane moieties are provided. The quantum-dot binding ligands include a multiplicity of amine or carboxy binding ligands in combination with silsesquioxane moieties providing improved stability for the ligated quantum dots. The ligands and coated nanostructures of the present invention are useful for close packed nanostructure compositions, which can have improved quantum confinement and/or reduced cross-talk between nanostructures.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 18, 2014
    Applicant: Nanosys, Inc.
    Inventors: William P. Freeman, Paul T. Furuta, Robert Dubrow, J. Wallace Parce
  • Publication number: 20140264189
    Abstract: The present invention describes a solventless ligand exchange using a siloxane polymer having a binding ligand that displaces the binding ligand on a quantum dot material.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 18, 2014
    Applicant: Nanosys, Inc.
    Inventors: Paul T. Furuta, Robert Dubrow
  • Publication number: 20140275431
    Abstract: Quantum-dot binding ligands with easy to synthesize alkyl-acids are provided. The quantum-dot binding ligands include a multiplicity of carboxy binding ligands in combination with an alkyl backbone, and optionally a solubilizing group. The ligands and coated nanostructures of the present invention are useful for close packed nanostructure compositions, which can have improved quantum confinement and/or reduced cross-talk between nanostructures.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 18, 2014
    Applicant: Nanosys, Inc.
    Inventors: William P. Freeman, Paul T. Furuta, Robert Dubrow
  • Publication number: 20140001405
    Abstract: Highly luminescent nanostructures, particularly highly luminescent quantum dots, are provided. The nanostructures have high photoluminescence quantum yields and in certain embodiments emit light at particular wavelengths and have a narrow size distribution. The nanostructures can comprise ligands, including C5-C8 carboxylic acid ligands employed during shell formation and/or dicarboxylic or polycarboxylic acid ligands provided after synthesis. Processes for producing such highly luminescent nanostructures are also provided, including methods for enriching nanostructure cores with indium and techniques for shell synthesis.
    Type: Application
    Filed: June 13, 2013
    Publication date: January 2, 2014
    Inventors: Wenzhuo Guo, Jian Chen, Robert Dubrow, William P. Freeman
  • Publication number: 20130345458
    Abstract: Siloxane polymer ligands for binding to quantum dots are provided. The polymers include a multiplicity of amine or carboxy binding ligands in combination with long-alkyl chains providing improved stability for the ligated quantum dots. The ligands and coated nanostructures of the present invention are useful for close packed nanostructure compositions, which can have improved quantum confinement and/or reduced cross-talk between nano structures.
    Type: Application
    Filed: March 14, 2013
    Publication date: December 26, 2013
    Applicant: Nanosys, Inc.
    Inventors: William P. Freeman, Paul T. Furuta, Wendy Guo, Robert Dubrow, J. Wallace Parce
  • Patent number: 8592037
    Abstract: Compositions containing a nanostructure, preferably a nanocrystal, are provided. The nanostructures have ligands bound to the surface. Such ligands are preferably siloxane containing ligands having at least one —COON group, although ligands having various ?P?O groups are also contemplated. The nanostructures can be embedded into a polymer such as a silicone polymer.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: November 26, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: J. Wallace Parce, Paul Bernatis, Robert Dubrow, William P Freeman, Joel Gamoras, Shihai Kan, Andreas Meisel, Baixin Qian, Jeffery A Whiteford, Jonathan Ziebarth