Patents by Inventor Robert Dwayne Gossman

Robert Dwayne Gossman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10354871
    Abstract: A method for sputtering an aluminum layer on a surface of a semiconductor device is presented. The method includes three sputtering steps for depositing the aluminum layer, where each sputtering step includes at least one sputtering parameter that is different from a corresponding sputtering parameter of another sputtering step. The surface of the semiconductor device includes a dielectric layer having a plurality of openings formed through the dielectric layer.
    Type: Grant
    Filed: September 11, 2017
    Date of Patent: July 16, 2019
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Stacey Joy Kennerly, Victor Torres, David Lilienfeld, Robert Dwayne Gossman, Gregory Keith Dudoff
  • Publication number: 20190080906
    Abstract: A method for sputtering an aluminum layer on a surface of a semiconductor device is presented. The method includes three sputtering steps for depositing the aluminum layer, where each sputtering step includes at least one sputtering parameter that is different from a corresponding sputtering parameter of another sputtering step. The surface of the semiconductor device includes a dielectric layer having a plurality of openings formed through the dielectric layer.
    Type: Application
    Filed: September 11, 2017
    Publication date: March 14, 2019
    Inventors: Stacey Joy Kennerly, Victor Torres, David Lilienfeld, Robert Dwayne Gossman, Gregory Keith Dudoff
  • Publication number: 20170104108
    Abstract: Methods for doping an absorbent layer of a p-n heterojunction in a thin film photovoltaic device are provided. The method can include depositing a window layer on a transparent substrate, where the window layer includes at least one dopant (e.g,. copper). A p-n heterojunction can be formed on the window layer, with the p-n heterojunction including a photovoltaic material (e.g., cadmium telluride) in an absorber layer. The dopant can then be diffused from the window layer into the absorber layer (e.g., via annealing).
    Type: Application
    Filed: December 20, 2016
    Publication date: April 13, 2017
    Applicant: First Solar, Inc.
    Inventors: Scott Daniel Feldman-Peabody, Robert Dwayne Gossman
  • Patent number: 9564543
    Abstract: Methods for doping an absorbent layer of a p-n heterojunction in a thin film photovoltaic device are provided. The method can include depositing a window layer on a transparent substrate, where the window layer includes at least one dopant (e.g., copper). A p-n heterojunction can be formed on the window layer, with the p-n heterojunction including a photovoltaic material (e.g., cadmium telluride) in an absorber layer. The dopant can then be diffused from the window layer into the absorber layer (e.g., via annealing).
    Type: Grant
    Filed: November 18, 2014
    Date of Patent: February 7, 2017
    Assignee: First Solar, Inc.
    Inventors: Scott Daniel Feldman-Peabody, Robert Dwayne Gossman
  • Publication number: 20160181467
    Abstract: A method of manufacturing a transparent oxide layer is provided. The manufacturing method includes disposing a cadmium tin oxide layer on a support, placing the support with the cadmium tin oxide layer within a chamber of a rapid thermal annealing system, and rapidly thermally annealing the cadmium tin oxide layer by exposing the cadmium tin oxide layer to electromagnetic radiation to form the transparent oxide layer, wherein the rapid thermal anneal is performed without first pumping down the chamber.
    Type: Application
    Filed: March 1, 2016
    Publication date: June 23, 2016
    Applicant: First Solar Malaysia Sdn.Bhd.
    Inventors: Steven Jude Duclos, Robert Dwayne Gossman, Hongying Peng, Juan Carlos Rojo
  • Patent number: 9306105
    Abstract: Thin film photovoltaic devices that include a transparent substrate; a transparent conductive oxide layer on the transparent substrate; a n-type window layer on the transparent conductive oxide layer; a p-type absorber layer on the n-type window layer; and, a back contact on the p-type absorber layer are provided. The p-type absorber layer comprises cadmium telluride, and forms a photovoltaic junction with the n-type window layer. Generally, the p-type absorber layer defines a plurality of finger structures protruding from the p-type absorber layer into the back contact. The finger structures can have an aspect ratio of about 1 or greater and/or can have a height that is about 20% to about 200% of the thickness of the p-type absorber layer. Methods of forming such finger structures protruding from a back surface of the p-type absorber layer are also provided.
    Type: Grant
    Filed: July 31, 2013
    Date of Patent: April 5, 2016
    Assignee: First Solar Malaysia Sdn. Bhd.
    Inventors: Scott Daniel Feldman-Peabody, Mark Jeffrey Pavol, Robert Dwayne Gossman, Bogdan Lita, Nathan John Kruse, John Milton Flood, III, Valerie Pflumio Hill
  • Patent number: 9276142
    Abstract: A method of manufacturing a transparent oxide layer is provided. The manufacturing method includes disposing a cadmium tin oxide layer on a support, placing the support with the cadmium tin oxide layer within a chamber of a rapid thermal annealing system, and rapidly thermally annealing the cadmium tin oxide layer by exposing the cadmium tin oxide layer to electromagnetic radiation to form the transparent oxide layer, wherein the rapid thermal anneal is performed without first pumping down the chamber.
    Type: Grant
    Filed: November 29, 2011
    Date of Patent: March 1, 2016
    Assignee: First Solar, Inc.
    Inventors: Hongying Peng, Robert Dwayne Gossman, Juan Carlos Rojo, Steven Jude Duclos
  • Patent number: 9054245
    Abstract: Methods for doping an absorbent layer of a p-n heterojunction in a thin film photovoltaic device are provided. The method can include depositing a window layer on a transparent substrate, where the window layer includes at least one dopant (e.g., copper). A p-n heterojunction can be formed on the window layer, with the p-n heterojunction including a photovoltaic material (e.g., cadmium telluride) in an absorber layer. The dopant can then be diffused from the window layer into the absorber layer (e.g., via annealing).
    Type: Grant
    Filed: March 2, 2012
    Date of Patent: June 9, 2015
    Assignee: First Solar, Inc.
    Inventors: Scott Daniel Feldman-Peabody, Robert Dwayne Gossman
  • Patent number: 9034686
    Abstract: Embodiments of the present invention include a method. The method includes heating a layer stack. The layer stack includes a first layer comprising cadmium and tin, a metal layer disposed over the first layer, and a window layer disposed over the metal layer. Heating the stack includes transforming at least a portion of the first layer from an amorphous phase to a crystalline phase. Heating may be performed using any of various configurations, such as, for example, heating an individual stack, or using a face-to-face configuration of multiple stacks. The stack may be used for fabricating a photovoltaic device.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: May 19, 2015
    Assignee: First Solar, Inc.
    Inventors: Hongying Peng, Bastiaan Arie Korevaar, Jinbo Cao, Stephen Lorenco Araujo, Scott Daniel Feldman-Peabody, Robert Dwayne Gossman
  • Patent number: 9000549
    Abstract: Thin film photovoltaic devices are provided. The device includes a transparent substrate; a transparent conductive oxide layer on the transparent substrate; an n-type window layer on the transparent conductive oxide layer, an absorber layer on the n-type window layer, and a back contact layer on the absorber layer. The n-type window layer includes a plurality of nanoparticles spatially distributed within a medium, with the nanoparticles comprising cadmium sulfide. In one embodiment, the medium has an optical bandgap that is greater than about 3.0 eV (e.g., includes a material other than cadmium sulfide). Methods are also provided for such thin film photovoltaic devices.
    Type: Grant
    Filed: November 14, 2012
    Date of Patent: April 7, 2015
    Assignee: First Solar, Inc.
    Inventors: Robert Dwayne Gossman, Scott Daniel Feldman-Peabody, Bastiaan Arie Korevaar
  • Publication number: 20150072466
    Abstract: Methods for doping an absorbent layer of a p-n heterojunction in a thin film photovoltaic device are provided. The method can include depositing a window layer on a transparent substrate, where the window layer includes at least one dopant (e.g., copper). A p-n heterojunction can be formed on the window layer, with the p-n heterojunction including a photovoltaic material (e.g., cadmium telluride) in an absorber layer. The dopant can then be diffused from the window layer into the absorber layer (e.g., via annealing).
    Type: Application
    Filed: November 18, 2014
    Publication date: March 12, 2015
    Applicant: FIRST SOLAR, INC.
    Inventors: Scott Daniel Feldman-Peabody, Robert Dwayne Gossman
  • Publication number: 20150034154
    Abstract: Thin film photovoltaic devices that include a transparent substrate; a transparent conductive oxide layer on the transparent substrate; a n-type window layer on the transparent conductive oxide layer; a p-type absorber layer on the n-type window layer; and, a back contact on the p-type absorber layer are provided. The p-type absorber layer comprises cadmium telluride, and forms a photovoltaic junction with the n-type window layer. Generally, the p-type absorber layer defines a plurality of finger structures protruding from the p-type absorber layer into the back contact. The finger structures can have an aspect ratio of about 1 or greater and/or can have a height that is about 20% to about 200% of the thickness of the p-type absorber layer. Methods of forming such finger structures protruding from a back surface of the p-type absorber layer are also provided.
    Type: Application
    Filed: July 31, 2013
    Publication date: February 5, 2015
    Applicant: PrimeStar Solar, Inc.
    Inventors: Scott Daniel Feldman-Peabody, Mark Jeffrey Pavol, Robert Dwayne Gossman, Bogdan Lita, Nathan John Kruse, John Milton Flood, III, Valerie Pflumio Hill
  • Patent number: 8912037
    Abstract: A method for making a photovoltaic device is presented. The method includes steps of disposing a window layer on a substrate and disposing an absorber layer on the window layer. Disposing the window layer, the absorber layer, or both layers includes introducing a source material into a deposition zone, wherein the source material comprises oxygen and a constituent of the window layer, of the absorber layer or of both layers. The method further includes step of depositing a film that comprises the constituent and oxygen.
    Type: Grant
    Filed: July 28, 2011
    Date of Patent: December 16, 2014
    Assignees: First Solar, Inc., Alliance for Sustainable Energy, LLC
    Inventors: James Neil Johnson, David Scott Albin, Scott Feldman-Peabody, Mark Jeffrey Pavol, Robert Dwayne Gossman
  • Publication number: 20140238849
    Abstract: Sputtering chambers including one or more first sputtering targets within the sputtering chamber and one or more second sputtering targets are generally provided. Each first sputtering target comprises a source material, and each second sputtering target comprises the source material and a dopant. A conveyor system is configured to transport a plurality of substrates through the sputtering chamber to deposit a thin film onto a surface of each substrate. A power source is electrically connected to each of the first sputtering targets and the second sputtering target. A target shield can also be included within the sputtering chamber, and can be positioned between a portion of the second sputtering target and the conveyor system. The dopant can be present within the second sputtering target as a discrete insert within a cavity defined by the source material. Methods are also provided for making a sputtering target and depositing a thin film.
    Type: Application
    Filed: February 25, 2013
    Publication date: August 28, 2014
    Applicant: First Solar, Inc.
    Inventors: Scott Daniel Feldman-Peabody, Stacy Ann Black, Robert Dwayne Gossman, Patrick Lynch O'Keefe
  • Publication number: 20140131826
    Abstract: Thin film photovoltaic devices are provided. The device includes a transparent substrate; a transparent conductive oxide layer on the transparent substrate; an n-type window layer on the transparent conductive oxide layer, an absorber layer on the n-type window layer, and a back contact layer on the absorber layer. The n-type window layer includes a plurality of nanoparticles spatially distributed within a medium, with the nanoparticles comprising cadmium sulfide. In one embodiment, the medium has an optical bandgap that is greater than about 3.0 eV (e.g., includes a material other than cadmium sulfide). Methods are also provided for such thin film photovoltaic devices.
    Type: Application
    Filed: November 14, 2012
    Publication date: May 15, 2014
    Applicant: PRIMESTAR SOLAR, INC.
    Inventors: Robert Dwayne Gossman, Scott Daniel Feldman-Peabody, Bastiaan Arie Korevaar
  • Publication number: 20140134838
    Abstract: Methods are generally provided for forming a conductive oxide layer on a substrate by sputtering a target to deposit a transparent conductive oxide layer (e.g., comprising comprises cadmium, tin, and oxygen) on the substrate; positioning an anneal surface in close proximity to the transparent conductive oxide layer (e.g., about 3 cm or less); and, annealing the transparent conductive oxide layer while the anneal surface is in close proximity to the transparent conductive oxide layer (e.g., at an anneal temperature of about 500° C. to about 700° C.) to create a localized cadmium vapor between the transparent conductive oxide layer and the anneal surface. The anneal surface can include a material reactive with oxygen at the anneal temperature. Apparatus is also provided for annealing a thin film layer on a substrate.
    Type: Application
    Filed: November 9, 2012
    Publication date: May 15, 2014
    Applicant: PrimeStar Solar, Inc.
    Inventors: Robert Dwayne Gossman, Kali Nicole Osborn, Hongying Peng
  • Publication number: 20140110246
    Abstract: Methods for forming a thin film layer on a substrate are provided. The method can include: rotating a cylindrical target about a center axis; ejecting atoms from the sputtering surface with a plasma; transporting a substrate across the plasma at a substantially consistent speed; and depositing the atoms ejected from the sputtering surface onto the substrate to form a thin film layer. The cylindrical target generally includes a source material forming a sputtering surface about the cylindrical target, with the source material having a plurality of first areas and a plurality of second areas. Each first area includes a first compound, and each second area includes a second compound, while the first compound is different than the second compound.
    Type: Application
    Filed: October 18, 2012
    Publication date: April 24, 2014
    Applicant: PRIMESTAR SOLAR, INC.
    Inventors: Scott Daniel Feldman-Peabody, Robert Dwayne Gossman, Mark Jeffrey Pavol
  • Publication number: 20140110245
    Abstract: Cylindrical sputtering targets, along with methods of their manufacture and use, are provided. The cylindrical sputtering target includes a tubular member having a length in a longitudinal direction and defining a tube surface, and a source material positioned about the tube surface of the tubular member and forming a sputtering surface about the tubular member. The source material generally defines an inner surface opposite of the sputtering surface and non-bonded to the tube surface of the tubular member. The inner surface of the source material is mechanically engaged to the tube surface of the tubular member, and/or the source material can include a first cylindrical ring directly stacked onto a second cylindrical ring with the first cylindrical ring being mechanically engaged to the second cylindrical ring.
    Type: Application
    Filed: October 18, 2012
    Publication date: April 24, 2014
    Applicant: PrimeStar Solar, Inc.
    Inventors: Robert Dwayne Gossman, Scott Daniel Feldman-Peabody, Russell Weldon Black
  • Publication number: 20140110255
    Abstract: Cylindrical sputtering targets are provided. The cylindrical sputtering target can include a tubular member having a length in a longitudinal direction and defining a tube surface. A source material is positioned about the tube surface of the tubular member and forms a sputtering surface about the tubular member. The source material generally includes a plurality of first areas and a plurality of second areas, each first area comprising a first compound and each second area comprising a second compound that is different than the first compound.
    Type: Application
    Filed: October 18, 2012
    Publication date: April 24, 2014
    Applicant: PRIMESTAR SOLAR, INC.
    Inventors: Scott Daniel Feldman-Peabody, Robert Dwayne Gossman, Mark Jeffrey Pavol
  • Publication number: 20140004655
    Abstract: Embodiments of the present invention include a method. The method includes heating a layer stack. The layer stack includes a first layer comprising cadmium and tin, a metal layer disposed over the first layer, and a window layer disposed over the metal layer. Heating the stack includes transforming at least a portion of the first layer from an amorphous phase to a crystalline phase. Heating may be performed using any of various configurations, such as, for example, heating an individual stack, or using a face-to-face configuration of multiple stacks. The stack may be used for fabricating a photovoltaic device.
    Type: Application
    Filed: June 29, 2012
    Publication date: January 2, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Hongying Peng, Bastiaan Arie Korevaar, Jinbo Cao, Stephen Lorenco Araujo, Scott Daniel Feldman-Peabody, Robert Dwayne Gossman