Patents by Inventor Robert E. Bridges

Robert E. Bridges has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12007483
    Abstract: A coordinate measuring device is provided having a light source that emits a beam of light. A distance meter measures a distance to a target. A first locator camera assembly includes a first camera and first lights. A second locator camera assembly includes a second camera and second lights. The processor matches retroreflectors in a first image of the first camera and a second image of the second camera based on a shape-and-context matching of retroreflector spots in the first and second image and on an area-context-matching of background objects in the first and second image. The retroreflector spots in the first image produced by illumination of the retroreflectors by the first lights, the retroreflector spots in the second image produced by illumination of the retroreflectors by the second lights. The processor provides a third image that includes both the background objects and markers indicating the matched retroreflectors.
    Type: Grant
    Filed: October 27, 2020
    Date of Patent: June 11, 2024
    Assignee: FARO Technologies, Inc.
    Inventors: Jacob J. Mertz, Jun Li, Michael Ferrara, Robert E. Bridges
  • Publication number: 20240167817
    Abstract: A method includes attaching a 3D projector to a stand, the 3D projector having a projecting mechanism and a gimbal mechanism; determining a six degree-of-freedom pose of the 3D projector based at least in part on steering at least one of the projecting mechanism and the gimbal mechanism to place the beam of light on each of a plurality of anchor targets in each of a first instance and a second instance, each anchor target having an anchor point with 3D coordinates known in a CAD model, each projection angle and gimbal angle to each of the plurality of anchor targets being different in first instance and the second instance.
    Type: Application
    Filed: August 3, 2023
    Publication date: May 23, 2024
    Inventors: Arkady SAVIKOVSKY, Joel STAVE, Ilya ALEXEEV, Matthew T. ARMSTRONG, Robert E. BRIDGES
  • Publication number: 20240159906
    Abstract: A method of operating a coordinate measurement device includes selecting an operating mode on the coordinate measurement device. A first light is emitted from at least one light source of the coordinate measurement device. At least two angles associated with the emitting of the first light are measured. A second light is received with an optical detector of the coordinate measurement device. The second light is a reflection of the first light off of at least one of the retroreflector and the surface. A first distance is determined based at least in part on a mode of the coordinate measurement device that is selected, the emitting of the first light, and the receiving of the second light. Three dimensional coordinates of a point in the environment is determined based on the measuring of the at least two angles and at least one of the first distance and the second distance.
    Type: Application
    Filed: November 20, 2023
    Publication date: May 16, 2024
    Inventors: Kenneth Steffey, Robert E. Bridges, David H. Parker
  • Patent number: 11860276
    Abstract: A three-dimensional (3D) coordinate measurement device and method of operating combines tracker and scanner functionality. The method includes selecting an operating mode on the coordinate measurement device. A first light is emitted from the coordinate measurement device. At least two angles associated with the emitting of the first light are measured. A second light is received with an optical detector, wherein the second light is a reflection of the first light off of the retroreflector or the surface. A distance is determined based at least in part on the selected mode, the emitting of the first light, and the receiving of the second light. Three dimensional coordinates of at least one point in the environment are determined based at least in part on the measuring of the at least two angles and the determination of the distance.
    Type: Grant
    Filed: July 22, 2021
    Date of Patent: January 2, 2024
    Assignee: FARO Technologies, Inc.
    Inventors: Kenneth Steffey, Robert E. Bridges, David H. Parker
  • Publication number: 20220414925
    Abstract: Examples described herein provide a method that includes capturing data about an environment. The method further includes generating a database of two-dimensional (2D) features and associated three-dimensional (3D) coordinates based at least in part on the data about the environment. The method further includes determining a position (x, y, z) and an orientation (pitch, roll, yaw) of a device within the environment based at least in part on the database of 2D features and associated 3D coordinates. The method further includes causing the device to display, on a display of the device, an augmented reality element at a predetermined location based at least in part on the position and the orientation of the device.
    Type: Application
    Filed: June 21, 2022
    Publication date: December 29, 2022
    Inventors: Jafar Amiri PARIAN, Robert E. BRIDGES
  • Patent number: 11408728
    Abstract: A dimensional measuring device includes an overview camera and a triangulation scanner. A six-DOF tracking device tracks the dimensional measuring device as the triangulation scanner measures three-dimensional (3D) coordinates on an exterior of the object. Cardinal points identified by the overview camera are used to register in a common frame of reference 3D coordinates measured by the triangulation scanner on the interior and exterior of the object.
    Type: Grant
    Filed: October 28, 2020
    Date of Patent: August 9, 2022
    Assignee: FARO TECHNOLOGIES, INC.
    Inventors: Bernd-Dietmar Becker, Robert E. Bridges, Ariane Stiebeiner, Rolf Heidemann, Matthias Wolke
  • Publication number: 20220155060
    Abstract: A triangulation scanner having an enclosure, a projector coupled to the enclosure and configured to emit a first light, and three cameras also coupled to the enclosure. The scanner further includes at least one processor to determine the three-dimensional coordinates in a local frame of reference based at least in part on receiving the first light.
    Type: Application
    Filed: February 7, 2022
    Publication date: May 19, 2022
    Inventors: Yazid Tohme, Rolf Heidemann, Markus Grau, Robert E. Bridges
  • Patent number: 11333761
    Abstract: A three-dimensional (3D) coordinate measurement device combines tracker and scanner functionality. The tracker function is configured to send light to a retroreflector and determine distance to the retroreflector based on the reflected light. The tracker is also configured to track the retroreflector as it moves, and to determine 3D coordinates of the retroreflector. The scanner is configured to send a beam of light to a point on an object surface and to determine 3D coordinate of the point. In addition, the scanner is configured to adjustably focus the beam of light.
    Type: Grant
    Filed: April 25, 2019
    Date of Patent: May 17, 2022
    Assignee: FARO TECHNOLOGIES, INC.
    Inventors: Kenneth Steffey, Robert E. Bridges, David H. Parker
  • Patent number: 11262194
    Abstract: A triangulation scanner having an enclosure, a projector coupled to the enclosure and configured to emit a first light, and three cameras also coupled to the enclosure. The scanner further includes at least one processor to determine the three-dimensional coordinates in a local frame of reference based at least in part on receiving the first light.
    Type: Grant
    Filed: December 8, 2020
    Date of Patent: March 1, 2022
    Assignee: FARO TECHNOLOGIES, INC.
    Inventors: Yazid Tohme, Rolf Heidemann, Markus Grau, Robert E. Bridges
  • Publication number: 20210349215
    Abstract: A three-dimensional (3D) coordinate measurement device and method of operating combines tracker and scanner functionality. The method includes selecting an operating mode on the coordinate measurement device. A first light is emitted from the coordinate measurement device. At least two angles associated with the emitting of the first light are measured. A second light is received with an optical detector, wherein the second light is a reflection of the first light off of the retroreflector or the surface. A distance is determined based at least in part on the selected mode, the emitting of the first light, and the receiving of the second light. Three dimensional coordinates of at least one point in the environment are determined based at least in part on the measuring of the at least two angles and the determination of the distance.
    Type: Application
    Filed: July 22, 2021
    Publication date: November 11, 2021
    Inventors: Kenneth Steffey, Robert E. Bridges, David H. Parker
  • Publication number: 20210116239
    Abstract: A triangulation scanner having an enclosure, a projector coupled to the enclosure and configured to emit a first light, and three cameras also coupled to the enclosure. The scanner further includes at least one processor to determine the three-dimensional coordinates in a local frame of reference based at least in part on receiving the first light.
    Type: Application
    Filed: December 8, 2020
    Publication date: April 22, 2021
    Inventors: Yazid Tohme, Rolf Heidemann, Markus Grau, Robert E. Bridges
  • Publication number: 20210080579
    Abstract: A coordinate measuring device is provided having a light source that emits a beam of light. A distance meter measures a distance to a target. A first locator camera assembly includes a first camera and first lights. A second locator camera assembly includes a second camera and second lights. The processor matches retroreflectors in a first image of the first camera and a second image of the second camera based on a shape-and-context matching of retroreflector spots in the first and second image and on an area-context-matching of background objects in the first and second image. The retroreflector spots in the first image produced by illumination of the retroreflectors by the first lights, the retroreflector spots in the second image produced by illumination of the retroreflectors by the second lights. The processor provides a third image that includes both the background objects and markers indicating the matched retroreflectors.
    Type: Application
    Filed: October 27, 2020
    Publication date: March 18, 2021
    Inventors: Jacob J. Mertz, Jun Li, Michael Ferrara, Robert E. Bridges
  • Publication number: 20210041222
    Abstract: A dimensional measuring device includes an overview camera and a triangulation scanner. A six-DOF tracking device tracks the dimensional measuring device as the triangulation scanner measures three-dimensional (3D) coordinates on an exterior of the object. Cardinal points identified by the overview camera are used to register in a common frame of reference 3D coordinates measured by the triangulation scanner on the interior and exterior of the object.
    Type: Application
    Filed: October 28, 2020
    Publication date: February 11, 2021
    Inventors: Bernd-Dietmar Becker, Robert E. Bridges, Ariane Stiebeiner, Rolf Heidemann, Matthias Wolke
  • Patent number: 10883819
    Abstract: A dimensional measuring device includes an overview camera and a triangulation scanner. A six-DOF tracking device tracks the dimensional measuring device as the triangulation scanner measures three-dimensional (3D) coordinates on an exterior of the object. Cardinal points identified by the overview camera are used to register in a common frame of reference 3D coordinates measured by the triangulation scanner on the interior and exterior of the object.
    Type: Grant
    Filed: September 14, 2018
    Date of Patent: January 5, 2021
    Assignee: FARO TECHNOLOGIES, INC.
    Inventors: Bernd-Dietmar Becker, Robert E. Bridges, Ariane Stiebeiner, Rolf Heidemann, Matthias Wolke
  • Patent number: 10866089
    Abstract: A three-dimensional (3D) scanner having two cameras and a projector is detachably coupled to a device selected from the group consisting of: an articulated arm coordinate measuring machine, a camera assembly, a six degree-of-freedom (six-DOF) tracker target assembly, and a six-DOF light point target assembly.
    Type: Grant
    Filed: August 27, 2019
    Date of Patent: December 15, 2020
    Assignee: FARO TECHNOLOGIES, INC.
    Inventors: Yazid Tohme, Rolf Heidemann, Markus Grau, Robert E. Bridges
  • Publication number: 20200248863
    Abstract: Platforms configured to support coordinate measurement devices are described. The platforms include a base plate defining a stable mobile platform, at least one movement device configured to enable movement of the stable mobile platform, at least one stabilizing actuator configured to deploy a stabilizer to engage with a surface, the at least one stabilizing actuator moveable between a deployed state in which the stabilizer contacts a surface and a mobile state in which the at least one movement device contacts the surface, and a platform controller configured to drive movement of the stable mobile platform by controlling operation of the at least one movement device when the at least one stabilizing actuator is in the mobile state.
    Type: Application
    Filed: November 13, 2019
    Publication date: August 6, 2020
    Inventors: Muhammad Umair Tahir, Oliver Zweigle, Robert E. Bridges
  • Publication number: 20200249330
    Abstract: An apparatus and method for calibrating a distance meter using a double-pass configuration based on reflection off an intermediate retroreflector. The system includes a first distance meter operable to send a first beam light in a first path that intercepts a first retroreflector and a second retroreflector, to receive the first beam of light after reflection from the first retroreflector and the second retroreflector, and to measure a first distance traveled by the first beam of light, the first retroreflector being located at a first position. The system further includes a second distance meter operable to send a second beam of light in a second path that intercepts the first retroreflector, to receive the second beam of light after reflection from the first retroreflector, and to measure a second distance traveled by the second beam of light.
    Type: Application
    Filed: November 5, 2019
    Publication date: August 6, 2020
    Inventors: Robert E. Bridges, John M. Mountney
  • Patent number: 10697754
    Abstract: At each of three different locations, a tracker captures a 2D image an object and measures three points in space at each of three tracker locations relative to the object. Based on this information, the tracker determines, in an object frame of reference, three-dimensional coordinates of an arbitrary point on an edge line common to the three 2D images.
    Type: Grant
    Filed: September 6, 2018
    Date of Patent: June 30, 2020
    Assignee: FARO TECHNOLOGIES, INC.
    Inventor: Robert E. Bridges
  • Patent number: 10670390
    Abstract: A method for verifying performance of a light projector includes establishing a reference artifact that include reflective makers and an interior edge line, determining with a laser-tracker-based three-dimensional (3D) measuring system 3D coordinates of the reflective targets and the interior edge line, determining with the light projector angles to the reflective markers with the light projector, and projecting with the light projector a pattern of light onto the interior edge line.
    Type: Grant
    Filed: October 16, 2018
    Date of Patent: June 2, 2020
    Assignee: FARO TECHNOLOGIES, INC.
    Inventors: Todd P. Wilson, Kelley Fletcher, Arkady Savikovsky, Masoud Mohazzab, Robert E. Bridges
  • Patent number: 10663588
    Abstract: A three-dimensional (3D) coordinate measurement device combines tracker and scanner functionality. The tracker function is configured to send light to a retroreflector and determine distance to the retroreflector based on the reflected light. The tracker is also configured to track the retroreflector as it moves, and to determine 3D coordinates of the retroreflector. The scanner is configured to send a beam of light to a point on an object surface and to determine 3D coordinate of the point. In addition, the scanner is configured to adjustably focus the beam of light.
    Type: Grant
    Filed: August 14, 2017
    Date of Patent: May 26, 2020
    Assignee: FARO TECHNOLOGIES, INC
    Inventors: Kenneth Steffey, Robert E. Bridges, David H. Parker