Patents by Inventor Robert E. Fontana

Robert E. Fontana has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7839607
    Abstract: A method is presented for fabricating a CPP read head having a CPP read head sensor and a hard bias layer which includes forming a strip of sensor material in a sensor material region, and depositing strips of fast-milling dielectric material in first and second fast-milling dielectric material regions adjacent to the sensor material region. A protective layer and a layer of masking material are deposited on the strip of sensor material and the strips of fast-milling dielectric material to provide masked areas and exposed areas. A shaping source, such as an ion milling source, is provided which shapes the exposed areas. Hard bias material is then deposited on the regions of sensor material and fast-milling dielectric material to form caps on each of these regions. The caps of hard bias material and the masking material are then removed from each of these regions.
    Type: Grant
    Filed: August 7, 2007
    Date of Patent: November 23, 2010
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Robert E. Fontana, Jr., Ying Hong, Wipul Pemsiri Jayasekara, Howard Gordon Zolla
  • Patent number: 7821822
    Abstract: Read/write elements for three-dimensional magnetic memories are disclosed. One embodiment describes an array of integrated read/write elements. The array includes read conductors formed proximate to one of the layers (i.e., storage stacks) of the three-dimensional magnetic memory. The array also includes flux caps formed proximate to the read conductors, and read sensors formed proximate to the flux caps. The array also includes a magnetic pole having a first end contacting the read sensor and a second end opposite the first end. First write conductors are fabricated between the magnetic poles, and second write conductors are also fabricated between the magnetic poles orthogonal to the first write conductors. The first write conductors and the second write conductors form current loops around the magnetic poles.
    Type: Grant
    Filed: August 14, 2008
    Date of Patent: October 26, 2010
    Assignee: Hitachi Global Storage Technologies Netherlands, B.V.
    Inventors: Robert E. Fontana, Jr., Jordan A. Katine, Ching Hwa Tsang, Barry Stipe, Bruce D. Terris
  • Publication number: 20100165511
    Abstract: A slider for magnetic data recording having a semiconductor based magnetoresistive sensor such as a Lorentz magnetoresistive sensor formed on an air bearing surface of the slider body. The slider is constructed of Si, which advantageously provides a needed physical robustness as well being compatible with the construction of a semiconductor based sensor thereon. A series of transition layers are provided between the surface of the Si slider body and the semiconductor based magnetoresistive sensor in order to provide a necessary grain structure for proper functioning of the sensor. The series of transition layers can be constructed of layers of SiGe each having a unique concentration of Ge.
    Type: Application
    Filed: December 30, 2008
    Publication date: July 1, 2010
    Inventors: Robert E. Fontana, JR., Bruce Alvin Gurney, Ernesto E. Marinero
  • Patent number: 7698807
    Abstract: Formation of the magnetic sensor layers of a magnetic sensor are separated into at least two depositions to reduce the dimension of the sensor. The free layer portion of the sensor is deposited at a different process step than the pinned layer portion. The top of the free layer stack can be a tunnel barrier, the free layer, or part of the free layer. The free layer stack also may contain an in-stack bias layer. The longitudinal bias layer may be patterned in a separate processing step, which allows the stack containing the free layer to be effectively thinner and allow smaller track width dimensions.
    Type: Grant
    Filed: January 20, 2006
    Date of Patent: April 20, 2010
    Assignee: Hitachi Global Storage Technologies, Netherlands B.V.
    Inventors: Jeffrey Robinson Childress, Robert E. Fontana, Jr., Jeffrey S. Lille
  • Publication number: 20100039849
    Abstract: Read/write elements for three-dimensional magnetic memories are disclosed. One embodiment describes an array of integrated read/write elements. The array includes read conductors formed proximate to one of the layers (i.e., storage stacks) of the three-dimensional magnetic memory. The array also includes flux caps formed proximate to the read conductors, and read sensors formed proximate to the flux caps. The array also includes a magnetic pole having a first end contacting the read sensor and a second end opposite the first end. First write conductors are fabricated between the magnetic poles, and second write conductors are also fabricated between the magnetic poles orthogonal to the first write conductors. The first write conductors and the second write conductors form current loops around the magnetic poles.
    Type: Application
    Filed: August 14, 2008
    Publication date: February 18, 2010
    Inventors: Robert E. Fontana, JR., Jordan A. Katine, Ching Hwa Tsang, Barry Stipe, Bruce D. Terris
  • Patent number: 7652954
    Abstract: A write head structure for perpendicular recording having a pole tip integrated into the metal film surrounding a C aperture near field light source is disclosed. The close proximity of the pole tip to the light source enables more precise location of data cells written into the magnetic media, through the use of dual gradient thermally assisted recording. In dual gradient recording, data is fixed by the effect of both a thermal gradient, which affects the coercivity of the magnetic media, combined with a magnetic field gradient imposed by the pole tip.
    Type: Grant
    Filed: May 22, 2008
    Date of Patent: January 26, 2010
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Robert E. Fontana, Jr., James Terrence Olson, Barry Cushing Stipe, Timothy Carl Strand
  • Publication number: 20100002487
    Abstract: Magnetic memories and methods are disclosed. A magnetic memory as described herein includes a plurality of stacked data storage layers to form a three-dimensional magnetic memory. Bits may be written to a data storage layer in the form of magnetic domains. The bits can then be transferred between the stacked data storage layers by heating a neighboring data storage layer, which allows the magnetic fields from the magnetic domains to imprint the magnetic domains in the neighboring data storage layer. By imprinting the magnetic domains into the neighboring data storage layer, the bits are copied from one data storage layer to another.
    Type: Application
    Filed: September 3, 2009
    Publication date: January 7, 2010
    Inventors: Robert E. Fontana, JR., Andreas Moser, Hal J. Rosen, Bruce D. Terris, Ching Hwa Tsang
  • Patent number: 7639459
    Abstract: In one illustrative example, a three terminal magnetic sensor (TTM) suitable for use in a magnetic head has a sensor stack structure which includes a base region, a collector region, and an emitter region. A first barrier layer separates the emitter region from the base region, and a second barrier layer separates the collector region from the base region. A plurality of terminals of the TTM include a base lead coupled to the base region, a collector lead coupled to the collector region, and an emitter lead coupled to the emitter region. Preferably, the base region consists of a free layer structure so as to have a relatively small thickness. A pinned layer structure is made part of the emitter region. An in-stack longitudinal biasing layer (LBL) structure is formed in stack with the sensor stack structure and has a magnetic moment that is parallel to a sensing plane of the TTM for magnetically biasing the free layer structure.
    Type: Grant
    Filed: January 10, 2005
    Date of Patent: December 29, 2009
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Jeffrey R. Childress, Robert E. Fontana, Jr., Jeffrey S. Lille
  • Patent number: 7635599
    Abstract: Three terminal magnetic sensing devices (TTMs) having base lead layers in-plane with collector substrate materials, and methods of making the same, are disclosed. In one illustrative example, a collector substrate having an elevated region and a recessed region adjacent the elevated region is provided. An insulator layer is formed in full-film over the collector substrate, and a base lead layer is formed in full-film over the insulator layer and in-plane with semiconductor materials of the elevated region. The insulator materials and the base lead materials that are formed over the elevated region are removed. A sensor stack structure having an emitter region and a base region is then formed over the elevated region such that part of the base region is formed over an end of the base lead layer. A base conductive via may be formed to contact base lead materials of the base lead layer at a suitable distance away from the sensor stack structure.
    Type: Grant
    Filed: September 29, 2005
    Date of Patent: December 22, 2009
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Robert E. Fontana, Jr., Jui-Lung Li, Jeffrey S. Lille, Sergio Nicoletti
  • Patent number: 7633718
    Abstract: EMR elements and methods of fabricating the EMR elements are disclosed. The EMR structure includes one or more layers that form an active region, such as a two-dimensional electron gas (2DEG). The EMR structure has a first side surface, having a plurality of lead protrusions that extend outwardly from the main body of the EMR structure, and an opposing second side surface. The lead protrusions are used to form the current and voltage leads for the EMR element. The active region extends through each lead protrusion and is accessible along a perimeter of each of the lead protrusions. Conductive material is formed along the perimeter of each lead protrusion and contacts the active region of the EMR structure along the perimeter. The lead protrusion and the corresponding conductive material contacting the active region of each lead protrusion form leads for the EMR element, such as current leads and voltage leads.
    Type: Grant
    Filed: June 27, 2005
    Date of Patent: December 15, 2009
    Assignee: Hitachi Global Storage Technologies Netherlands, B.V.
    Inventors: Robert E. Fontana, Jr., Stefan Maat
  • Publication number: 20090290454
    Abstract: A write head structure for perpendicular recording having a pole tip integrated into the metal film surrounding a C aperture near field light source is disclosed. The close proximity of the pole tip to the light source enables more precise location of data cells written into the magnetic media, through the use of dual gradient thermally assisted recording. In dual gradient recording, data is fixed by the effect of both a thermal gradient, which affects the coercivity of the magnetic media, combined with a magnetic field gradient imposed by the pole tip.
    Type: Application
    Filed: May 22, 2008
    Publication date: November 26, 2009
    Inventors: Robert E. Fontana, JR., James Terrence Olson, Barry Cushing Stipe, Timothy Carl Strand
  • Patent number: 7615771
    Abstract: Solid-state memories are disclosed that are comprised of cross-point memory arrays. The cross-point memory arrays include a first plurality of electrically conductive lines and a second plurality of electrically conductive lines that cross over the first plurality of electrically conductive lines. The memory arrays also include a plurality of memory cells located between the first and second conductive lines. The memory cells are formed from a metallic material, such as FeRh, having the characteristic of a first order phase transition due to a change in temperature. The first order phase transition causes a corresponding change in resistivity of the metallic material.
    Type: Grant
    Filed: April 27, 2006
    Date of Patent: November 10, 2009
    Assignee: Hitachi Global Storage Technologies Netherlands, B.V.
    Inventors: Robert E. Fontana, Jr., Eric E. Fullerton, Stefan Maat, Jan-Ulrich Thiele
  • Patent number: 7606065
    Abstract: Magnetic memories and methods are disclosed. A magnetic memory as described herein includes a plurality of stacked data storage layers to form a three-dimensional magnetic memory. Bits may be written to a data storage layer in the form of magnetic domains. The bits can then be transferred between the stacked data storage layers by heating a neighboring data storage layer, which allows the magnetic fields from the magnetic domains to imprint the magnetic domains in the neighboring data storage layer. By imprinting the magnetic domains into the neighboring data storage layer, the bits are copied from one data storage layer to another.
    Type: Grant
    Filed: May 6, 2008
    Date of Patent: October 20, 2009
    Assignee: Hitachi Global Storage Technologies Netherlands, B.V.
    Inventors: Robert E. Fontana, Jr., Andreas Moser, Hal J. Rosen, Bruce D. Terris, Ching Hwa Tsang
  • Publication number: 20090258186
    Abstract: A process for forming a plurality of sliders for use in thermally-assisted recording (TAR) disk drives includes a wafer-level process for forming a plurality of aperture structures, and optionally abutting optical channels, on a wafer surface prior to cutting the wafer into individual sliders. The wafer has a generally planar surface arranged into a plurality of rectangularly-shaped regions. In each rectangular region a first metal layer is deposited on the wafer surface, followed by a layer of radiation-transmissive aperture material, which is then lithographically patterned to define the width of the aperture, the aperture width being parallel to the length of the rectangularly-shaped region. A second metal layer is deposited over the patterned layer of aperture material. The resulting structure is then lithographically patterned to define an aperture structure comprising aperture material surrounded by metal and having parallel radiation entrance and exit faces orthogonal to the wafer surface.
    Type: Application
    Filed: April 10, 2008
    Publication date: October 15, 2009
    Applicant: HITACHI GLOBAL STORAGE TECHNOLOGIES NETHERLANDS B. V.
    Inventors: Robert E. Fontana, JR., Jordan Asher Katine, Neil Leslie Robertson, Barry Cushing Stipe, Timothy Carl Strand, Bruce David Terris
  • Publication number: 20090190269
    Abstract: An extraordinary magnetoresistive sensor (EMR sensor) having a lead structure that is self aligned with a magnetic shunt structure. To form an EMR sensor according to an embodiment of the invention, a plurality of layers are deposited to form quantum well structure such as a two dimensional electron gas structure (2DEG). A first mask structure is deposited having two openings, and a material removal process is performed to remove portions of the sensor material from areas exposed by the openings. The distance between the two openings in the first mask defines a distance between a set of leads and the shunt structure. A non-magnetic metal is then deposited. A second mask structure is then formed to define shape of the leads.
    Type: Application
    Filed: January 28, 2008
    Publication date: July 30, 2009
    Inventors: Thomas Dudley Boone, JR., Liesl Folks, Robert E. Fontana, JR., Bruce Alvin Gurney, Jordan Asher Katine, Sergio Nicoletti
  • Publication number: 20090161262
    Abstract: A three terminal magnetic sensing device (TTM) having a trackwidth defined in a localized region by a patterned insulator, and methods of making the same, are disclosed. In one illustrative example, one or more first sensor layers (e.g. which includes a “base” layer) are formed over a collector substrate. A patterned insulator which defines a central opening exposing a top layer of the one or more first sensor layers is then formed. The central opening has a width for defining a trackwidth (TW) of the TTM. Next, one or more second sensor layers are formed over the top layer of the one or more first sensor layers through the central opening of the patterned insulator. The one or more second sensor layers may include a tunnel barrier layer formed in contact with the top layer of the one or more first sensor layers, as well as an “emitter” layer. Various embodiments and techniques are provided.
    Type: Application
    Filed: December 20, 2007
    Publication date: June 25, 2009
    Inventors: Jeffrey R. Childress, Robert E. Fontana, JR., Jui-Lung Li, Sergio Nicoletti
  • Publication number: 20090154027
    Abstract: Read sensors and associated methods of fabrication are disclosed. A read sensor as disclosed herein includes a first shield, a sensor stack including an antiparallel (AP) free layer, and insulating material disposed on the sensor stack. A aperture is formed through the insulating material above the sensor stack so that a subsequently deposited second shield is electrically coupled to the sensor stack through the aperture. The width of the aperture controls the current density that is injected into the top of the sensor stack. Also, hard bias structures may be formed to be electrically coupled to the sensor stack. The electrical coupling of the sensor stack and the hard bias structures allows current to laterally spread out as it passes through the sensor stack, and hence, provides a non-uniform current density.
    Type: Application
    Filed: December 16, 2007
    Publication date: June 18, 2009
    Inventors: Hamid Balamane, Jeffrey R. Childress, Robert E. Fontana, JR., Jordan A. Katine, Neil Smith
  • Publication number: 20080310055
    Abstract: The present invention provides methods and systems for repeatably creating and severing a short circuit to protect an electronic component from ESD. A short circuit may be formed between read sensor pads of a read sensor by depositing a shorting material on a magnetic head using a Laser Induced Forward Transfer (LIFT) process. The short circuit may be unshorted using a laser scan configured to sever the shorting material. In one embodiment, a shorting station may be provided to prevent spreading of the shorting material to undesired areas of the electronic component.
    Type: Application
    Filed: June 15, 2007
    Publication date: December 18, 2008
    Inventors: Robert E. Fontana, JR., Sergey Kiselev, Edward Hin Pong Lee, Kenneth Donald Mackay, Surya Narayan Pattanaik, Chie Ching Poon
  • Patent number: 7463459
    Abstract: A self pinned magnetoresistive sensor that has a relatively thick compressive material at either side to assist with self pinning. A shield having recessed portions at either side of the sensor area allows room for a thicker compressive layer than would otherwise be possible.
    Type: Grant
    Filed: February 18, 2004
    Date of Patent: December 9, 2008
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Meng Ding, Robert E. Fontana, Jr., Kuok San Ho, Neil Leslie Robertson, Ching Hwa Tsang
  • Publication number: 20080205116
    Abstract: Magnetic memories and methods are disclosed. A magnetic memory as described herein includes a plurality of stacked data storage layers to form a three-dimensional magnetic memory. Bits may be written to a data storage layer in the form of magnetic domains. The bits can then be transferred between the stacked data storage layers by heating a neighboring data storage layer, which allows the magnetic fields from the magnetic domains to imprint the magnetic domains in the neighboring data storage layer. By imprinting the magnetic domains into the neighboring data storage layer, the bits are copied from one data storage layer to another.
    Type: Application
    Filed: May 6, 2008
    Publication date: August 28, 2008
    Inventors: Robert E. Fontana, Andreas Moser, Hal J. Rosen, Bruce D. Terris, Ching Hwa Tsang