Patents by Inventor Robert E. Klinkowstein

Robert E. Klinkowstein has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10880978
    Abstract: The present application provides a bipolar x-ray tube module. The bipolar x-ray tube module may include a bipolar x-ray tube and at least two voltage multipliers. The voltage multipliers may be positioned such that the voltage gradient of the first voltage multiplier is substantially parallel to the second voltage multiplier in order to provide a compact configuration.
    Type: Grant
    Filed: February 24, 2017
    Date of Patent: December 29, 2020
    Assignee: Newton Scientific, Inc.
    Inventors: Robert E. Klinkowstein, Ruth E. Shefer
  • Publication number: 20170251545
    Abstract: The present application provides a bipolar x-ray tube module. The bipolar x-ray tube module may include a bipolar x-ray tube and at least two voltage multipliers. The voltage multipliers may be positioned such that the voltage gradient of the first voltage multiplier is substantially parallel to the second voltage multiplier in order to provide a compact configuration.
    Type: Application
    Filed: February 24, 2017
    Publication date: August 31, 2017
    Inventors: Robert E. Klinkowstein, Ruth E. Shefer
  • Publication number: 20160217901
    Abstract: An electrical transformer is provided. The transformer may include a first winding, a second winding, and a highly resistive magnetic core. The highly resistive magnetic core may provide galvanic isolation between the core material and both the first and second windings.
    Type: Application
    Filed: September 4, 2014
    Publication date: July 28, 2016
    Inventor: Robert E. Klinkowstein
  • Patent number: 7949099
    Abstract: An x-ray system is disclosed that includes a bipolar x-ray tube. The bipolar x-ray tube includes two insulators that are separated by an intermediate electrode in an embodiment, wherein each insulator forms a portion of an outer wall of a vacuum envelope of the bipolar x-ray tube surrounding at least a portion of a path of an electron beam within the vacuum envelope. In further embodiments, the bipolar x-ray tube includes a first electrode at a positive high voltage potential with respect to a reference potential, a second electrode at a negative high voltage potential with respect to the reference potential, and an x-ray transmissive window that is at the positive high voltage potential.
    Type: Grant
    Filed: July 3, 2008
    Date of Patent: May 24, 2011
    Assignee: Newton Scientific Inc.
    Inventors: Robert E. Klinkowstein, Ruth E. Shefer
  • Publication number: 20090010393
    Abstract: An x-ray system is disclosed that includes a bipolar x-ray tube. The bipolar x-ray tube includes two insulators that are separated by an intermediate electrode in an embodiment, wherein each insulator forms a portion of an outer wall of a vacuum envelope of the bipolar x-ray tube surrounding at least a portion of a path of an electron beam within the vacuum envelope. In further embodiments, the bipolar x-ray tube includes a first electrode at a positive high voltage potential with respect to a reference potential, a second electrode at a negative high voltage potential with respect to the reference potential, and an x-ray transmissive window that is at the positive high voltage potential.
    Type: Application
    Filed: July 3, 2008
    Publication date: January 8, 2009
    Applicant: NEWTON SCIENTIFIC, INC.
    Inventors: Robert E. Klinkowstein, Ruth E. Shefer
  • Patent number: 7448802
    Abstract: Described is a self-contained, small, lightweight, power-efficient and radiation-shielded module that includes a miniature vacuum X-ray tube emitting X-rays of a controlled intensity and defined spectrum. Feedback control circuits are used to monitor and maintain the beam current and voltage. The X-ray tube, high-voltage power supply, and the resonant converter are encapsulated in a solid high-voltage insulating material. The module can be configured into complex geometries and can be powered by commercially available small, compact, low-voltage batteries.
    Type: Grant
    Filed: January 22, 2004
    Date of Patent: November 11, 2008
    Assignees: Newton Scientific, Inc., INPHO, Inc.
    Inventors: Peter E. Oettinger, Frank M. Feda, Ruth E. Shefer, Robert E. Klinkowstein
  • Patent number: 7448801
    Abstract: Described is a self-contained, small, lightweight, power-efficient and radiation-shielded module that includes a miniature vacuum X-ray tube emitting X-rays of a controlled intensity and defined spectrum. Feedback control circuits are used to monitor and maintain the beam current and voltage. The X-ray tube, high-voltage power supply, and the resonant converter are encapsulated in a solid high-voltage insulating material. The module can be configured into complex geometries and can be powered by commercially available small, compact, low-voltage batteries.
    Type: Grant
    Filed: February 20, 2003
    Date of Patent: November 11, 2008
    Assignees: INPHO, Inc., Newton Scientific Inc.
    Inventors: Peter E. Oettinger, Francis M. Feda, Ruth E. Shefer, Robert E. Klinkowstein
  • Patent number: 7177392
    Abstract: An x-ray tube emits X-rays in response to a current control signal. An X-ray detector detects the emitted X-rays and provides a detected X-ray signal indicative thereof to a control system, which provides the current control signal. The X-ray detector provides feedback stabilization of the X-ray output from a source of X-rays, such as, for example an X-ray tube. The detector produces an electrical signal proportional to the X-ray output of the X-ray tube, and that signal is used to control the electron beam current in the tube in order to stabilize the X-ray output of the tube at a predetermined value.
    Type: Grant
    Filed: September 10, 2003
    Date of Patent: February 13, 2007
    Assignee: Newton Scientific, Inc.
    Inventors: Ruth E. Shefer, Robert E. Klinkowstein, Earl S. Marmar
  • Patent number: 6927985
    Abstract: A high voltage power supply includes a current source that provides a continuous current signal, and a switching circuit that includes a plurality of switching elements. The switching circuit is responsive to the continuous current signal, and provides an alternating current signal. The power supply also includes a multiplier-rectifier circuit with at least one loading inductor, and having an input responsive to said alternating current signal to provide a rectified output signal. The switching circuit may be configured and arranged as an H-bridge circuit. The input of the multiplier-rectifier circuit is short circuited every half cycle of the alternating current signal during the transition from positive to negative current flow (or visa-versa).
    Type: Grant
    Filed: July 17, 2002
    Date of Patent: August 9, 2005
    Assignee: Newton Scientific, Inc.
    Inventor: Robert E. Klinkowstein
  • Publication number: 20040109536
    Abstract: An x-ray tube emits X-rays in response to a current control signal. An X-ray detector detects the emitted X-rays and provides a detected X-ray signal indicative thereof to a control system, which provides the current control signal. The X-ray detector provides feedback stabilization of the X-ray output from a source of X-rays, such as, for example an X-ray tube. The detector produces an electrical signal proportional to the X-ray output of the X-ray tube, and that signal is used to control the electron beam current in the tube in order to stabilize the X-ray output of the tube at a predetermined value.
    Type: Application
    Filed: September 10, 2003
    Publication date: June 10, 2004
    Inventors: Ruth E. Shefer, Robert E. Klinkowstein, Earl S. Marmar
  • Publication number: 20030058659
    Abstract: A high voltage power supply includes a current source that provides a continuous current signal, and a switching circuit that includes a plurality of switching elements. The switching circuit is responsive to the continuous current signal, and provides an alternating current signal. The power supply also includes a multiplier-rectifier circuit with at least one loading inductor, and having an input responsive to said alternating current signal to provide a rectified output signal. The switching circuit may be configured and arranged as an H-bridge circuit. The input of the multiplier-rectifier circuit is short circuited every half cycle of the alternating current signal during the transition from positive to negative current flow (or visa-versa).
    Type: Application
    Filed: July 17, 2002
    Publication date: March 27, 2003
    Inventor: Robert E. Klinkowstein
  • Patent number: 6414327
    Abstract: A method and apparatus for ion beam generation in which acceleration of an ion beam in a first accelerating tube to a high voltage terminal, followed by transport of the beam through the terminal without significant charge changing, and deceleration of the beam substantially to ground potential in a second accelerating tube. Since the terminal is maintained at high voltage, the beam optical characteristics between the ion source and the terminal are identical to those of normal tandem operation. The optical elements of the injector and accelerator beamline can therefore be adjusted to produce an focused beam envelope in the high voltage terminal, allowing the beam to propagate efficiently through an empty stripper canal. Since the beam, does not undergo a charge change in the terminal, it is decelerated in the second tandem accelerating tube. Since the beam propagates through the accelerator at energies higher than the injection energy, expansion of the beam due to space charge and emittance is reduced.
    Type: Grant
    Filed: September 14, 1999
    Date of Patent: July 2, 2002
    Assignee: Newton Scientific, Inc.
    Inventors: Robert E. Klinkowstein, Ruth Shefer, Barbara J. Hughey
  • Patent number: 6148061
    Abstract: A miniature x-ray unit includes a first electrical node, a second electrical node and an insulating material. The first and second nodes are separated by a vacuum gap. The first node includes a base portion and a projecting portion, wherein the projecting portion and the second node are surrounded by an x-ray transmissive window through which x-rays exit the unit. The insulating material coaxially surrounds the base portion of the first node such that the insulating material is recessed from the vacuum gap, and the insulator does not extend into the vacuum gap. Recessing the insulating material from the vacuum gap decreases the likelihood that the insulator will electrically break down due to the accumulation of electrical charge, and/or the accumulation of other materials on the surface of the insulator. In a preferred embodiment, the first node is an anode and the second node is a cathode. Alternatively, the first node may be the cathode and the second node may be the anode.
    Type: Grant
    Filed: April 28, 1998
    Date of Patent: November 14, 2000
    Assignee: Newton Scientific, Inc.
    Inventors: Ruth Shefer, Robert E. Klinkowstein, Barbara J. Hughey
  • Patent number: 6011825
    Abstract: Radionuclides are produced according to the present invention at commercially significant yields and at specific activities which are suitable for use in radiodiagnostic agents such as PET imaging agents and radiotherapeutic agents and/or compositions. In the method and system of the present invention, a solid target having an isotopically enriched target layer electroplated on an inert substrate is positioned in a specially designed target holder and irradiated with a charged-particle beam. The beam is preferably generated using an accelerator such as a biomedical cyclotron at energies ranging from about 5 MeV to about 25 MeV. The target is preferably directly irradiated, without an intervening attenuating foil, and with the charged particle beam impinging an area which substantially matches the target area.
    Type: Grant
    Filed: August 9, 1996
    Date of Patent: January 4, 2000
    Assignee: Washington University
    Inventors: Michael J. Welch, Deborah W. McCarthy, Ruth E. Shefer, Robert E. Klinkowstein
  • Patent number: 5976066
    Abstract: In one embodiment there is provided an application of the .sup.10 B(n,.alpha.).sup.7 Li nuclear reaction or other neutron capture reactions for the treatment of rheumatoid arthritis. This application, called Boron Neutron Capture Synovectomy (BNCS), requires substantially altered demands on neutron beam design than for instance treatment of deep seated tumors. Considerations for neutron beam design for the treatment of arthritic joints via BNCS are provided for, and comparisons with the design requirements for Boron Neutron Capture Therapy (BNCT) of tumors are made. In addition, exemplary moderator/reflector assemblies are provided which produce intense, high-quality neutron beams based on (p,n) accelerator-based reactions. In another embodiment there is provided the use of deuteron-based charged particle reactions to be used as sources for epithermal or thermal neutron beams for neutron capture therapies. Many d,n reactions (e.g.
    Type: Grant
    Filed: August 28, 1997
    Date of Patent: November 2, 1999
    Assignees: Massachusetts Institute of Technology, Newton Scientific, Inc.
    Inventors: Jacquelyn C. Yanch, Ruth E. Shefer, Robert E. Klinkowstein
  • Patent number: 5468355
    Abstract: A target is bombarded with high energy particles to generate a radioisotope, and the radioisotope is preferably extracted by one of the following: combusting the target in oxygen, stopping the bombardment and heating the target, or heating the target by induction. Bombardment may take place through a windowless path, and the radioisotope may be used for PET. The particles used may be deuterons or protons, and .sup.13 N may be generated. .sup.11 C may also be generated from either .sup.11 B or .sup.10 B using protons or deuterons. Combustion may be performed by induction heating and may be controlled by the quantity of oxygen available or the temperature. Combustion may be primarily confined to a surface layer and the target may be reused. The beam energy may be 2.2 MeV or less. Another general aspect includes trapping the oxides of .sup.13 N in a trap. The oxides may be converted into .sup.
    Type: Grant
    Filed: June 4, 1993
    Date of Patent: November 21, 1995
    Assignees: Science Research Laboratory, Washington University
    Inventors: Ruth E. Shefer, Robert E. Klinkowstein, Barbara J. Hughey, Michael J. Welch, Carmen S. Dence
  • Patent number: 5280505
    Abstract: This invention relates to a method and apparatus for the generation of isotopes, and in particular radioisotopes, from a target material which is not normally a solid and which, when bombarded by selected high energy particles, produces the selected isotope. A surface is provided which is preferably of a thermally-conductive material, which surface is cooled to a temperature below the freezing temperature of the target material. A thin layer of target material is then frozen on the surface and the target material is bombarded with the high energy particles. The beam of high energy particles is preferably at an angle to the surface such that the particles pass through a thickness of the target material greater than the thickness of the layer before reaching the surface. When the desired quantity of isotope has been produced from the target material, the target material, which has now been altered nuclearly to contain the selected isotope, is removed from the surface.
    Type: Grant
    Filed: May 3, 1991
    Date of Patent: January 18, 1994
    Assignee: Science Research Laboratory, Inc.
    Inventors: Barbara Hughey, Robert E. Klinkowstein, Ruth Shefer
  • Patent number: 5135704
    Abstract: A high energy, charged particle accelerator, and radiation sources utilizing such accelerator are provided. More particularly, a high yield neutron generator and apparatus for the use of such generator are provided. The generator utilizes an ion source, a target adapted to generate neutrons when bombarded by high energy ions and an accelerator tube between the source and target. A multistage cascade rectifier is paraxial with the accelerator tube and has a voltage gradient which substantially matches that of the accelerator tube. The cascade rectifier preferably surrounds the accelerator tube and has equipotential metal plates on each side of each stage, the potential gradients between each pair of plates being substantially uniform and being substantially equal to the voltage gradient in the adjacent section of the accelerator tube. Generator elements may be enclosed in a pressure vessel and a moderator may be provided in the vessel, near the target to thermalize neutrons emitted from the target.
    Type: Grant
    Filed: March 2, 1990
    Date of Patent: August 4, 1992
    Assignee: Science Research Laboratory, Inc.
    Inventors: Ruth Shefer, Robert E. Klinkowstein
  • Patent number: 4887604
    Abstract: An energy substraction medical imaging system which is used for imaging a body part impregnated with a radio-opaque dye such as iodine is provided. The system includes an electron beam target having a target surface which, when excited by a high-energy electron beam, generates radiation having strong K.sub..alpha. at energy levels slightly above and slightly below the K-edge energy level of the dye. The target surface is preferably formed of a compound containing lanthanum, such as lanthanum oxide. The target may also be formed of a compound containing a material having a K.sub..alpha. line at an energy level slightly above the dye K-edge and a material with K.sub..alpha. line slightly below the dye K-edge or with separate sections containing such materials which are alternately excited. The target is excited by a high-energy electron beam from a suitable source, the electron beam having sufficient energy to provide a high photon yield at the K.sub..alpha.
    Type: Grant
    Filed: May 16, 1988
    Date of Patent: December 19, 1989
    Assignee: Science Research Laboratory, Inc.
    Inventors: Ruth Shefer, Robert E. Klinkowstein, Richard Petrasso
  • Patent number: RE34575
    Abstract: A high current (0.2 to at least 2 milliamperes), low-energy (2.2 to 4 MV) ion beam is generated and is utilized to produce clinically significant quantities of medical isotopes useful in applications such as positron emission tomography. For a preferred embodiment, a tandem accelerator is utilized. Negative ions generated by a high current negative-ion source are accelerated by an electrostatic accelerator in which the necessary high voltage is produced by a solid state power supply. The accelerated ions then enter a stripping cell which removes electrons from the ions, converting them into positive ions. The positive ions are then accelerated to a target which is preferably at ground potential.
    Type: Grant
    Filed: January 18, 1991
    Date of Patent: April 5, 1994
    Assignee: Science Reseach Corporation
    Inventors: Robert E. Klinkowstein, Ruth Shefer