Patents by Inventor Robert E. Mihailovich

Robert E. Mihailovich has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9607748
    Abstract: A micro-fabricated electromagnetic device is provided for on-circuit integration. The electromagnetic device includes a core. The core has a plurality of electrically insulating layers positioned alternatingly between a plurality of magnetic layers to collectively form a continuous laminate having alternating magnetic and electrically insulating layers. The electromagnetic device includes a coil embedded in openings of the semiconductor substrate. An insulating material is positioned in the cavity and between the coil and an inner surface of the core. A method of manufacturing the electromagnetic device includes providing a semiconductor substrate having openings formed therein. Windings of a coil are electroplated and embedded in the openings. The insulating material is coated on or around an exposed surface of the coil.
    Type: Grant
    Filed: September 3, 2014
    Date of Patent: March 28, 2017
    Assignee: Teledyne Scientific & Imaging, LLC
    Inventors: Robert E. Mihailovich, Alex P. Papavasiliou, Vivek Mehrotra, Philip A. Stupar, Robert L. Borwick, III, Rahul Ganguli, Jeffrey F. DeNatale
  • Publication number: 20160064470
    Abstract: A micro-fabricated electromagnetic device is provided for on-circuit integration. The electromagnetic device includes a core. The core has a plurality of electrically insulating layers positioned alternatingly between a plurality of magnetic layers to collectively form a continuous laminate having alternating magnetic and electrically insulating layers. The electromagnetic device includes a coil embedded in openings of the semiconductor substrate. An insulating material is positioned in the cavity and between the coil and an inner surface of the core. A method of manufacturing the electromagnetic device includes providing a semiconductor substrate having openings formed therein. Windings of a coil are electroplated and embedded in the openings. The insulating material is coated on or around an exposed surface of the coil.
    Type: Application
    Filed: September 3, 2014
    Publication date: March 3, 2016
    Inventors: Robert E. Mihailovich, Alex P. Papavasiliou, Vivek Mehrotra, Philip A. Stupar, Robert L. Borwick, III, Rahul Ganguli, Jeffrey F. DeNatale
  • Publication number: 20150185416
    Abstract: The present disclosure discloses silicon waveguides with embedded active circuitry fabricated from silicon wafers utilizing photolithographic microfabrication techniques to define waveguide structures and embedded circuit recesses for receiving integrated circuitry. The method of fabricating the waveguides utilizes a double masking layer, one layer of which at least partially defines at least one waveguide and the other layer of which at least partially defines the at least one waveguide and at least one embedded circuit recess. The photolithographic microfabrication techniques are sufficiently precise for the required small structural features of high frequency waveguides and the double masking layer allows the method to be completed more efficiently. The basic fabrication method may be extended to provide batch arrays to mass produce silicon waveguide devices.
    Type: Application
    Filed: March 13, 2015
    Publication date: July 2, 2015
    Inventors: Philip A. Stupar, Robert L. Borwick, III, Robert E. Mihailovich, Jeffrey F. DeNatale
  • Patent number: 8995800
    Abstract: A method of fabricating silicon waveguides with embedded active circuitry from silicon-on-insulator wafers utilizes photolithographic microfabrication techniques to define waveguide structures and embedded circuit recesses for receiving integrated circuitry. The method utilizes a double masking layer, one layer of which at least partially defines at least one waveguide and the other layer of which at least partially defines the at least one waveguide and at least one embedded circuit recess. The photolithographic microfabrication techniques are sufficiently precise for the required small structural features of high frequency waveguides and the double masking layer allows the method to be completed more efficiently. The basic fabrication method may be extended to provide batch arrays to mass produce silicon waveguide devices.
    Type: Grant
    Filed: July 6, 2012
    Date of Patent: March 31, 2015
    Assignee: Teledyne Scientific & Imaging, LLC
    Inventors: Philip A. Stupar, Robert L. Borwick, III, Robert E. Mihailovich, Jeffrey F. DeNatale
  • Patent number: 8941907
    Abstract: A microelectromechanical shutter system includes an actuator beam formed in a substrate, at least one actuator electrode spaced apart and electrically isolated from the actuator beam, the at least one actuator electrode angling away from a base of the actuator beam to actuate the actuator beam using a zipper action, and a fiber-optic channel in the substrate to receive a fiber-optic cable. A shutter mirror is included on a distal end of the actuator beam, with the shutter mirror in substantial alignment with a centerline of the fiber-optic channel. Upon application of a voltage between the actuator beam and the at least one actuator electrode, an electrostatic force is created between them to move the shutter mirror across the end of the fiber-optic channel.
    Type: Grant
    Filed: December 8, 2010
    Date of Patent: January 27, 2015
    Assignee: Teledyne Scientific & Imaging, LLC.
    Inventors: Alexandros P. Papavasiliou, Robert E. Mihailovich, John E. Mansell, Graham J. Martin
  • Publication number: 20140205231
    Abstract: A method of fabricating silicon waveguides with embedded active circuitry from silicon-on-insulator wafers utilizes photolithographic microfabrication techniques to define waveguide structures and embedded circuit recesses for receiving integrated circuitry. The method utilizes a double masking layer, one layer of which at least partially defines at least one waveguide and the other layer of which at least partially defines the at least one waveguide and at least one embedded circuit recess. The photolithographic microfabrication techniques are sufficiently precise for the required small structural features of high frequency waveguides and the double masking layer allows the method to be completed more efficiently. The basic fabrication method may be extended to provide batch arrays to mass produce silicon waveguide devices.
    Type: Application
    Filed: July 6, 2012
    Publication date: July 24, 2014
    Inventors: PHILIP A. STUPAR, Robert L. Borwick, III, Robert E. Mihailovich, Jeffrey F. DeNatale
  • Publication number: 20120162741
    Abstract: A microelectromechanical shutter system includes an actuator beam formed in a substrate, at least one actuator electrode spaced apart and electrically isolated from the actuator beam, the at least one actuator electrode angling away from a base of the actuator beam to actuate the actuator beam using a zipper action, and a fiber-optic channel in the substrate to receive a fiber-optic cable. A shutter mirror is included on a distal end of the actuator beam, with the shutter mirror in substantial alignment with a centerline of the fiber-optic channel. Upon application of a voltage between the actuator beam and the at least one actuator electrode, an electrostatic force is created between them to move the shutter mirror across the end of the fiber-optic channel.
    Type: Application
    Filed: December 8, 2010
    Publication date: June 28, 2012
    Inventors: Alexandros P. Papavasiliou, Robert E. Mihailovich, John E. Mansell, Graham J. Martin
  • Patent number: 7157993
    Abstract: A 1:N MEM switch module comprises N MEM switches fabricated on a common substrate, each of which has input and output contacts and a movable contact which bridges the input and output contacts when the switch is actuated. The input contacts are connected to a common input node, and the output contacts are connected to respective output lines. Each output line has an associated inductance and effective capacitance, and is arranged such that its inductance is matched to its effective capacitance. The switches are preferably arranged symmetrically about the terminus point of the signal input line. A phase shifter employs at least two switch modules connected together with N transmission lines having different lengths, operated such that an input signal is routed via one of the transmission lines to effect a desired phase-shift.
    Type: Grant
    Filed: September 30, 2003
    Date of Patent: January 2, 2007
    Assignee: Rockwell Scientific Licensing, LLC
    Inventors: Jeffrey F. DeNatale, Robert E. Mihailovich, Jonathan B. Hacker
  • Patent number: 7068220
    Abstract: A hybrid circuit phase shifter assembly of RF MEMS switch modules and passive phase delay shifter circuits uses a low loss, preferably flip-chip, interconnection technology. The hybrid circuit assembly approach separates the fabrication of the MEMS switch modules from the fabrication of the passive phase delay circuits thereby avoiding process incompatibilities and low yields and providing substantial production cost savings. In another aspect of the invention, the integration on a common substrate of a MEMS-based hybrid circuit phase shifter assembly behind each of a plurality of radiating elements provides a compact, low cost electronic scanning antenna array.
    Type: Grant
    Filed: September 29, 2003
    Date of Patent: June 27, 2006
    Assignee: Rockwell Scientific Licensing, LLC
    Inventors: Jeffrey F. DeNatale, Jonathan B. Hacker, Robert E. Mihailovich, William R. Norvell
  • Patent number: 6417743
    Abstract: The present invention relates to a micro electromechanical (MEM) isolator in which an input signal induces an output signal by means of electrically insulating mechanical motion. The MEM isolator device comprises a dielectric moveable platform suspended above a substrate by flexible beams. A drive and a control capacitor each have one electrode supported by the platform and one electrode supported by the substrate. Coupling between electrical and mechanical energies is achieved by providing an input signal to the drive capacitor to induce platform motion. When the input signal is fed to the drive capacitor, it actuates electrostatic motion of the platform resulting in a change in the value of the control capacitance. The change in the control capacitance is converted via a simple electronics circuit into an output that mirrors the input but is electrically isolated therefrom.
    Type: Grant
    Filed: September 21, 1999
    Date of Patent: July 9, 2002
    Assignee: Rockwell Science Center, LLC
    Inventors: Robert E. Mihailovich, Jun J. Yao