Patents by Inventor Robert Edison Tsai

Robert Edison Tsai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9816753
    Abstract: Embodiments of apparatuses and methods for reforming of hydrocarbons including recovery of products are provided. In one example, a method comprises separating a reforming-zone effluent to form a net gas phase stream and a liquid phase hydrocarbon stream. The net gas phase stream is compressed, partially condensed and cooled to form a partially condensed, compressed net gas phase stream. The partially condensed, compressed net gas phase stream is separated to form an intermediate gas phase stream. The intermediate gas phase stream is cooled to form a cooled intermediate gas phase stream. The liquid phase hydrocarbon stream is cooled to form a cooled liquid phase hydrocarbon stream. The cooled intermediate gas phase stream is contacted with the cooled liquid phase hydrocarbon stream to form an H2-rich stream and a cooled second intermediate liquid phase hydrocarbon stream that is enriched with C3/C4 hydrocarbons.
    Type: Grant
    Filed: May 4, 2017
    Date of Patent: November 14, 2017
    Assignee: UOP LLC
    Inventors: Robert Edison Tsai, Xin X. Zhu, Tokhanh Ngo, William Yanez, Bryan K. Glover
  • Publication number: 20170234613
    Abstract: Embodiments of apparatuses and methods for reforming of hydrocarbons including recovery of products are provided. In one example, a method comprises separating a reforming-zone effluent to form a net gas phase stream and a liquid phase hydrocarbon stream. The net gas phase stream is compressed, partially condensed and cooled to form a partially condensed, compressed net gas phase stream. The partially condensed, compressed net gas phase stream is separated to form an intermediate gas phase stream. The intermediate gas phase stream is cooled to form a cooled intermediate gas phase stream. The liquid phase hydrocarbon stream is cooled to form a cooled liquid phase hydrocarbon stream. The cooled intermediate gas phase stream is contacted with the cooled liquid phase hydrocarbon stream to form an H2-rich stream and a cooled second intermediate liquid phase hydrocarbon stream that is enriched with C3/C4 hydrocarbons.
    Type: Application
    Filed: May 4, 2017
    Publication date: August 17, 2017
    Inventors: Robert Edison Tsai, Xin X. Zhu, Tokhanh Ngo, William Yanez, Bryan K. Glover
  • Patent number: 9670114
    Abstract: Embodiments of apparatuses and methods for reforming of hydrocarbons including recovery of products are provided. In one example, a method comprises separating a reforming-zone effluent to form a net gas phase stream and a liquid phase hydrocarbon stream. The net gas phase stream is compressed, partially condensed and cooled to form a partially condensed, compressed net gas phase stream. The partially condensed, compressed net gas phase stream is separated to form an intermediate gas phase stream. The intermediate gas phase stream is cooled to form a cooled intermediate gas phase stream. The liquid phase hydrocarbon stream is cooled to form a cooled liquid phase hydrocarbon stream. The cooled intermediate gas phase stream is contacted with the cooled liquid phase hydrocarbon stream to form an H2-rich stream and a cooled second intermediate liquid phase hydrocarbon stream that is enriched with C3/C4 hydrocarbons.
    Type: Grant
    Filed: October 27, 2014
    Date of Patent: June 6, 2017
    Assignee: UOP LLC
    Inventors: Robert Edison Tsai, Xin X Zhu, Tokhanh Ngo, William Yanez, Bryan K. Glover
  • Patent number: 9663423
    Abstract: Embodiments of apparatuses and methods for reforming of hydrocarbons including recovery of products are provided. In one example, a method comprises separating a reforming-zone effluent to form a net gas phase stream and a liquid phase hydrocarbon stream. The net gas phase stream is compressed, partially condensed and cooled, and separated to form an intermediate gas phase stream. The intermediate gas phase stream is cooled to form a cooled intermediate gas phase stream. The liquid phase hydrocarbon stream is cooled to form a cooled liquid phase hydrocarbon stream. The cooled intermediate gas phase stream is contacted with the cooled liquid phase hydrocarbon stream to form an H2-rich stream and a cooled second intermediate liquid phase hydrocarbon stream that is enriched with C3/C4 hydrocarbons. The H2-rich stream is contacted with an adsorbent to form an H2-ultra rich stream.
    Type: Grant
    Filed: October 27, 2014
    Date of Patent: May 30, 2017
    Assignee: UOP LLC
    Inventors: Bryan K. Glover, Robert Edison Tsai, Xin X. Zhu, William Yanez
  • Patent number: 9637426
    Abstract: Embodiments of apparatuses and methods for reforming of hydrocarbons including recovery of products are provided. In one example, a method comprises separating a reforming-zone effluent to form a net gas phase stream and a liquid phase hydrocarbon stream. The net gas phase stream is compressed, partially condensed and cooled to form a partially condensed, compressed net gas phase stream. The partially condensed, compressed net gas phase stream is separated to form an intermediate gas phase stream. The intermediate gas phase stream and the liquid phase hydrocarbon stream are combined to form a two-phase combined stream. The two-phase combined stream is cooled and separated to form an H2-rich stream and a cooled second intermediate liquid phase hydrocarbon stream that is enriched with C3/C4 hydrocarbons and further comprises C5+ hydrocarbons.
    Type: Grant
    Filed: October 27, 2014
    Date of Patent: May 2, 2017
    Assignee: UOP LLC
    Inventors: Robert Edison Tsai, Xin X. Zhu, Tokhanh Ngo, William Yanez, Lisa Lane
  • Patent number: 9637427
    Abstract: Embodiments of apparatuses and methods for reforming of hydrocarbons including recovery of products are provided. In one example, a method comprises separating a reforming-zone effluent to form a net gas phase stream and a liquid phase hydrocarbon stream. The net gas phase stream is separated for forming an H2-rich stream and a first intermediate liquid phase hydrocarbon stream. The H2-rich stream is contacted with an adsorbent to form an H2-ultra rich stream and a pressure swing adsorption (PSA) tail gas stream. The PSA tail gas stream and at least a portion of the liquid phase hydrocarbon stream are combined and cooled to form a cooled two-phase combined stream. The cooled two-phase combined stream is separated into a H2, C2?hydrocarbons-containing gas stream and a cooled second intermediate liquid phase hydrocarbon stream.
    Type: Grant
    Filed: October 27, 2014
    Date of Patent: May 2, 2017
    Assignee: UOP LLC
    Inventors: Robert Edison Tsai, Xin X. Zhu, Tokhanh Ngo, William Yanez, Lisa Lane
  • Patent number: 9399607
    Abstract: Embodiments of apparatuses and methods for reforming of hydrocarbons including recovery of products are provided. In one example, a method comprises separating a reforming-zone effluent into a net gas phase stream and a liquid phase hydrocarbon stream. The net gas phase stream is separated for forming an H2-rich stream and a first intermediate liquid phase hydrocarbon stream. The H2-rich stream is contacted with an adsorbent to form an H2-ultra rich stream and a PSA tail gas stream. The PSA tail gas stream is contacted with an H2/hydrocarbon separation membrane to separate the PSA tail gas stream and form an H2-ultra rich permeate stream and a PSA tail gas hydrocarbon-containing non-permeate residue stream.
    Type: Grant
    Filed: October 27, 2014
    Date of Patent: July 26, 2016
    Assignee: UOP LLC
    Inventors: Robert Edison Tsai, Xin X. Zhu, Bryan K. Glover, Eleftherios Adamopoulos, William Yanez
  • Patent number: 9327973
    Abstract: Embodiments of apparatuses and methods for reforming of hydrocarbons including recovery of products are provided. In one example, a method comprises separating a reforming-zone effluent into a net gas phase stream and a liquid phase hydrocarbon stream. The net gas phase stream is separated for forming an H2-rich stream and a first intermediate liquid phase hydrocarbon stream. The H2-rich stream is contacted with an adsorbent to form an H2-ultra rich stream and a PSA tail gas stream. The PSA tail gas stream and at least a portion of the liquid phase hydrocarbon stream are cooled and contacted with each other to form a H2, C2? hydrocarbons-containing gas stream and a cooled second intermediate liquid phase hydrocarbon stream.
    Type: Grant
    Filed: October 27, 2014
    Date of Patent: May 3, 2016
    Assignee: UOP LLC
    Inventors: Robert Edison Tsai, Xin X. Zhu, Tokhanh Ngo, William Yanez, Bryan K. Glover
  • Publication number: 20160115101
    Abstract: Embodiments of apparatuses and methods for reforming of hydrocarbons including recovery of products are provided. In one example, an apparatus comprises a separation zone to receive and separate a reforming-zone effluent to form a net gas phase stream and a liquid phase hydrocarbon stream. A compressor receives and compresses the net gas phase stream to form a compressed net gas phase stream. A chiller receives and cools the liquid phase hydrocarbon stream to form a cooled liquid phase hydrocarbon stream. A first mixing device receives and mixes the compressed net gas phase stream and at least a portion of the cooled liquid phase hydrocarbon stream to extract C3/C4 hydrocarbons from the compressed net gas phase stream into the at least the portion of the cooled liquid phase hydrocarbon stream.
    Type: Application
    Filed: October 27, 2014
    Publication date: April 28, 2016
    Inventors: William Yanez, Lisa Lane, David William Ablin, Robert Edison Tsai, Xin X. Zhu, Tokhanh Ngo
  • Publication number: 20160115096
    Abstract: Embodiments of apparatuses and methods for reforming of hydrocarbons including recovery of products are provided. In one example, a method comprises separating a reforming-zone effluent to form a net gas phase stream and a liquid phase hydrocarbon stream. The net gas phase stream is compressed, partially condensed and cooled to form a partially condensed, compressed net gas phase stream. The partially condensed, compressed net gas phase stream is separated to form an intermediate gas phase stream. The intermediate gas phase stream and the liquid phase hydrocarbon stream are combined to form a two-phase combined stream. The two-phase combined stream is cooled and separated to form an H2-rich stream and a cooled second intermediate liquid phase hydrocarbon stream that is enriched with C3/C4 hydrocarbons and further comprises C5+ hydrocarbons.
    Type: Application
    Filed: October 27, 2014
    Publication date: April 28, 2016
    Inventors: Robert Edison Tsai, Xin X. Zhu, Tokhanh Ngo, William Yanez, Lisa Lane
  • Publication number: 20160115100
    Abstract: Embodiments of apparatuses and methods for reforming of hydrocarbons including recovery of products are provided. In one example, a method comprises separating a reforming-zone effluent to form a net gas phase stream and a liquid phase hydrocarbon stream. The net gas phase stream is compressed, partially condensed and cooled, and separated to form an intermediate gas phase stream. The intermediate gas phase stream is cooled to form a cooled intermediate gas phase stream. The liquid phase hydrocarbon stream is cooled to form a cooled liquid phase hydrocarbon stream. The cooled intermediate gas phase stream is contacted with the cooled liquid phase hydrocarbon stream to form an H2-rich stream and a cooled second intermediate liquid phase hydrocarbon stream that is enriched with C3/C4 hydrocarbons. The H2-rich stream is contacted with an adsorbent to form an H2-ultra rich stream.
    Type: Application
    Filed: October 27, 2014
    Publication date: April 28, 2016
    Inventors: Bryan K. Glover, Robert Edison Tsai, Xin X. Zhu, William Yanez
  • Publication number: 20160115099
    Abstract: Embodiments of apparatuses and methods for reforming of hydrocarbons including recovery of products are provided. In one example, a method comprises separating a reforming-zone effluent into a net gas phase stream and a liquid phase hydrocarbon stream. The net gas phase stream is separated for forming an H2-rich stream and a first intermediate liquid phase hydrocarbon stream. The H2-rich stream is contacted with an adsorbent to form an H2-ultra rich stream and a PSA tail gas stream. The PSA tail gas stream is contacted with an H2/hydrocarbon separation membrane to separate the PSA tail gas stream and form an H2-ultra rich permeate stream and a PSA tail gas hydrocarbon-containing non-permeate residue stream.
    Type: Application
    Filed: October 27, 2014
    Publication date: April 28, 2016
    Inventors: Robert Edison Tsai, Xin X. Zhu, Bryan K. Glover, Eleftherios Adamopoulos, William Yanez
  • Publication number: 20160115097
    Abstract: Embodiments of apparatuses and methods for reforming of hydrocarbons including recovery of products are provided. In one example, a method comprises separating a reforming-zone effluent to form a net gas phase stream and a liquid phase hydrocarbon stream. The net gas phase stream is separated for forming an H2-rich stream and a first intermediate liquid phase hydrocarbon stream. The H2-rich stream is contacted with an adsorbent to form an H2-ultra rich stream and a pressure swing adsorption (PSA) tail gas stream. The PSA tail gas stream and at least a portion of the liquid phase hydrocarbon stream are combined and cooled to form a cooled two-phase combined stream. The cooled two-phase combined stream is separated into a H2, C2?hydrocarbons-containing gas stream and a cooled second intermediate liquid phase hydrocarbon stream.
    Type: Application
    Filed: October 27, 2014
    Publication date: April 28, 2016
    Inventors: Robert Edison Tsai, Xin X. Zhu, Tokhanh Ngo, William Yanez, Lisa Lane
  • Publication number: 20160115098
    Abstract: Embodiments of apparatuses and methods for reforming of hydrocarbons including recovery of products are provided. In one example, a method comprises separating a reforming-zone effluent to form a net gas phase stream and a liquid phase hydrocarbon stream. The net gas phase stream is compressed, partially condensed and cooled to form a partially condensed, compressed net gas phase stream. The partially condensed, compressed net gas phase stream is separated to form an intermediate gas phase stream. The intermediate gas phase stream is cooled to form a cooled intermediate gas phase stream. The liquid phase hydrocarbon stream is cooled to form a cooled liquid phase hydrocarbon stream. The cooled intermediate gas phase stream is contacted with the cooled liquid phase hydrocarbon stream to form an H2-rich stream and a cooled second intermediate liquid phase hydrocarbon stream that is enriched with C3/C4 hydrocarbons.
    Type: Application
    Filed: October 27, 2014
    Publication date: April 28, 2016
    Inventors: Robert Edison Tsai, Xin X. Zhu, Tokhanh Ngo, William Yanez, Bryan K. Glover
  • Publication number: 20160115024
    Abstract: Embodiments of apparatuses and methods for reforming of hydrocarbons including recovery of products are provided. In one example, a method comprises separating a reforming-zone effluent into a net gas phase stream and a liquid phase hydrocarbon stream. The net gas phase stream is separated for forming an H2-rich stream and a first intermediate liquid phase hydrocarbon stream. The H2-rich stream is contacted with an adsorbent to form an H2-ultra rich stream and a PSA tail gas stream. The PSA tail gas stream and at least a portion of the liquid phase hydrocarbon stream are cooled and contacted with each other to form a H2, C2? hydrocarbons-containing gas stream and a cooled second intermediate liquid phase hydrocarbon stream.
    Type: Application
    Filed: October 27, 2014
    Publication date: April 28, 2016
    Inventors: Robert Edison Tsai, Xin X. Zhu, Tokhanh Ngo, William Yanez, Bryan K. Glover