Patents by Inventor Robert Edward Rudd, III

Robert Edward Rudd, III has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7262595
    Abstract: An inductive proximity sensor for sensing the presence of target based on a change of inductance in the sensor. The sensor includes a coil and a core formed of a permeable material so as to form an electromagnetic field when the coil is electrically driven. The core has a base, a central post, an outer wall, and at least one slot. The central post extends distally from the base and through the coil and defines a distal end. The outer wall extends distally from the base and around the coil and also defines a distal end. The slot or slots are for enhancing the performance of the sensor by reducing eddy current losses in the core. Each slot extends at least partially along a path defined from the distal end of the outer wall to the base and from the base to the distal end of the central post.
    Type: Grant
    Filed: July 27, 2005
    Date of Patent: August 28, 2007
    Assignee: Simmonds Precision Products, INc.
    Inventor: Robert Edward Rudd, III
  • Patent number: 7165820
    Abstract: According to the present invention, there is provided a method and system for providing brake control, autobrake and antiskid brake functionality by recognizing that the only difference between the three functions is the amount of deceleration they allow. Unlike a conventional system where the pedals represent brake pressure, the present invention interprets pedal commands as desired deceleration. The method and system involve controlling acceleration of a wheel reference speed and setting a desired slip based on autobrake settings, pedal positions, and various parameters. A proportional/integral/derivative algorithm controls wheel speed and is monitored for normal operation. Abnormal operation generates control parameters which are used to alter the wheel reference speed and its deceleration. Additionally, vehicles using the invention will benefit from improved yaw stability, even brake temperatures and differential braking during antiskid operation.
    Type: Grant
    Filed: March 11, 2005
    Date of Patent: January 23, 2007
    Assignee: Goodrich Corporation
    Inventor: Robert Edward Rudd, III
  • Patent number: 7110873
    Abstract: According to the present invention, there is provided a method and system for providing brake control, autobrake and antiskid brake functionality by recognizing that the only difference between the three functions is the amount of deceleration they allow. Unlike a conventional system where the pedals represent brake pressure, the present invention interprets pedal commands as desired deceleration. The method and system involve controlling acceleration of a wheel reference speed and setting a desired slip based on autobrake settings, pedal positions, and various parameters. A proportional/integral/derivative algorithm controls wheel speed and is monitored for normal operation. Abnormal operation generates control parameters which are used to alter the wheel reference speed and its deceleration. Additionally, vehicles using the invention will benefit from improved yaw stability, even brake temperatures and differential braking during antiskid operation.
    Type: Grant
    Filed: March 11, 2005
    Date of Patent: September 19, 2006
    Assignee: Goodrich Corporation
    Inventor: Robert Edward Rudd, III
  • Patent number: 7039517
    Abstract: According to the present invention, there is provided a method and system for providing brake control, autobrake and antiskid brake functionality by recognizing that the only difference between the three functions is the amount of deceleration they allow. Unlike a conventional system where the pedals represent brake pressure, the present invention interprets pedal commands as desired deceleration. The method and system involve controlling acceleration of a wheel reference speed and setting a desired slip based on autobrake settings, pedal positions, and various parameters. A proportional/integral/derivative algorithm controls wheel speed and is monitored for normal operation. Abnormal operation generates control parameters which are used to alter the wheel reference speed and its deceleration. Additionally, vehicles using the invention will benefit from improved yaw stability, even brake temperatures and differential braking during antiskid operation.
    Type: Grant
    Filed: March 11, 2005
    Date of Patent: May 2, 2006
    Assignee: Goodrich Corporation
    Inventor: Robert Edward Rudd, III
  • Patent number: 6882920
    Abstract: According to the present invention, there is provided a method and system for providing brake control, autobrake and antiskid brake functionality by recognizing that the only difference between the three functions is the amount of deceleration they allow. Unlike a conventional system where the pedals represent brake pressure, the present invention interprets pedal commands as desired deceleration. The method and system involve controlling acceleration of a wheel reference speed and setting a desired slip based on autobrake settings, pedal positions, and various parameters. A proportional/integral/derivative algorithm controls wheel speed and is monitored for normal operation. Abnormal operation generates control parameters which are used to alter the wheel reference speed and its deceleration. Additionally, vehicles using the invention will benefit from improved yaw stability, even brake temperatures and differential braking during antiskid operation.
    Type: Grant
    Filed: April 29, 2003
    Date of Patent: April 19, 2005
    Assignee: Goodrich Corporation
    Inventor: Robert Edward Rudd, III
  • Patent number: 6220676
    Abstract: According to one aspect of the invention, a brake controller is provided for controlling an amount of braking force applied to a plurality of wheels of a vehicle running on a surface. Each of the plurality of wheels has a sensor for providing an output signal indicative of a corresponding speed of the wheel. The controller includes a state estimator which estimates an amount of friction between each of the plurality of wheels and the surface based on the output signals of the sensors, the estimated amount of friction for each wheel being based on the estimated amount of friction for the other wheels. The controller further includes a control output which adjusts the amount of braking force applied to the plurality of wheels based on the estimated amount of friction.
    Type: Grant
    Filed: February 12, 1998
    Date of Patent: April 24, 2001
    Assignee: The B. F. Goodrich Company
    Inventor: Robert Edward Rudd, III
  • Patent number: 5918951
    Abstract: A brake control system for controlling an amount of braking force applied to a wheel of a vehicle running on a surface, comprising a sensor for measuring a speed of the wheel and for providing an output signal indicative of the speed; and a controller, operatively coupled to the sensor, which implements a Kalman filter to estimate an amplitude and location of a peak in a mu-slip curve representative of a coefficient of friction between the wheel and the surface based on the output signal of the sensor, and which controls the amount of braking force applied to the wheel based on the amplitude and location of the peak.
    Type: Grant
    Filed: May 9, 1997
    Date of Patent: July 6, 1999
    Assignee: The B.F. Goodrich Company
    Inventor: Robert Edward Rudd, III