Patents by Inventor Robert F. Payne

Robert F. Payne has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11536950
    Abstract: A digital micromirror device includes a plurality of micromirror cells on a semiconductor die. Each respective cell includes a memory circuit and an electrode selection circuit. At least some of the micromirror cells include a micromirror and each respective memory circuit controls a micromirror tilt angle. For a given memory circuit controlled to a first tilt angle, a measurement circuit measures a first value indicative of a capacitance between a first electrode and the micromirror and measures a second value indicative of a capacitance on the second electrode. For a second micromirror tilt angle, the measurement circuit measures a third value indicative of a capacitance between the first electrode and the micromirror and measures a fourth value indicative of a capacitance on the second electrode. The measurement circuit generates a signal indicative of whether the micromirror is stuck at a particular angle or missing.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: December 27, 2022
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Robert F. Payne, Molly Nelis Sing
  • Publication number: 20190204587
    Abstract: A digital micromirror device includes a plurality of micromirror cells on a semiconductor die. Each respective cell includes a memory circuit and an electrode selection circuit. At least some of the micromirror cells include a micromirror and each respective memory circuit controls a micromirror tilt angle. For a given memory circuit controlled to a first tilt angle, a measurement circuit measures a first value indicative of a capacitance between a first electrode and the micromirror and measures a second value indicative of a capacitance on the second electrode. For a second micromirror tilt angle, the measurement circuit measures a third value indicative of a capacitance between the first electrode and the micromirror and measures a fourth value indicative of a capacitance on the second electrode. The measurement circuit generates a signal indicative of whether the micromirror is stuck at a particular angle or missing.
    Type: Application
    Filed: December 19, 2018
    Publication date: July 4, 2019
    Inventors: Robert F. PAYNE, Molly Nelis SING
  • Patent number: 10251258
    Abstract: An apparatus is provided. There is a circuit assembly with a package substrate and an integrated circuit (IC). The package substrate has a microstrip line, and the IC is secured to the package substrate and is electrically coupled to the microstrip line. A circuit board is also secured to the package substrate. A dielectric waveguide is secured to the circuit board. The dielectric waveguide has a dielectric core that extends into a transition region located between the dielectric waveguide and the microstrip line, and the microstrip line is configured to form a communication link with the dielectric waveguide.
    Type: Grant
    Filed: June 28, 2016
    Date of Patent: April 2, 2019
    Assignee: Texas Instruments Incorporated
    Inventors: Juan A. Herbsommer, Robert F. Payne, Marco Corsi, Baher S. Haroun, Hassan Ali
  • Publication number: 20160309581
    Abstract: An apparatus is provided. There is a circuit assembly with a package substrate and an integrated circuit (IC). The package substrate has a microstrip line, and the IC is secured to the package substrate and is electrically coupled to the microstrip line. A circuit board is also secured to the package substrate. A dielectric waveguide is secured to the circuit board. The dielectric waveguide has a dielectric core that extends into a transition region located between the dielectric waveguide and the microstrip line, and the microstrip line is configured to form a communication link with the dielectric waveguide.
    Type: Application
    Filed: June 28, 2016
    Publication date: October 20, 2016
    Inventors: Juan A. Herbsommer, Robert F. Payne, Marco Corsi, Baher S. Haroun, Hassan Ali
  • Patent number: 9405064
    Abstract: An apparatus is provided. There is a circuit assembly with a package substrate and an integrated circuit (IC). The package substrate has a microstrip line, and the IC is secured to the package substrate and is electrically coupled to the microstrip line. A circuit board is also secured to the package substrate. A dielectric waveguide is secured to the circuit board. The dielectric waveguide has a dielectric core that extends into a transition region located between the dielectric waveguide and the microstrip line, and the microstrip line is configured to form a communication link with the dielectric waveguide.
    Type: Grant
    Filed: April 4, 2012
    Date of Patent: August 2, 2016
    Assignee: Texas Instruments Incorporated
    Inventors: Juan A. Herbsommer, Robert F. Payne, Marco Corsi, Baher S. Haroun, Hassan Ali
  • Patent number: 9013339
    Abstract: To date, bandwidth mismatch within time-interleaved (TI) analog-to-digital converters (ADCs) has been largely ignored because compensation for bandwidth mismatch is performed by digital post-processing, namely finite impulse response filters. However, the lag from digital post-processing is prohibitive in high speed systems, indicating a need for blind mismatch compensation. Even with blind bandwidth mismatch estimation, though, adjustment of the filter characteristics of track-and-hold (T/H) circuits within the TI ADCs can be difficult. Here, a T/H circuit architecture is provided that uses variations of the gate voltage of a sampling switch (which varies the “on” resistance of the sampling switch) to change the bandwidth of the T/H circuits so as to precisely match the bandwidths.
    Type: Grant
    Filed: July 18, 2012
    Date of Patent: April 21, 2015
    Assignee: Texas Instruments Incorporated
    Inventors: Robert F. Payne, Marco Corsi
  • Patent number: 8958504
    Abstract: A method is provided. A multi-amplitude signal is received and downconverted so as to generate I and Q signals using a local oscillator signal. The I and Q signals are equalized, and the equalized I and Q signals are digitized. First and second gains are adjusted with the second and first digital signals, respectively, and applied to the equalized I and Q signals, respectively. The difference between the first and second amplified signals is determined, and an error signal is generated from the difference between the first and second amplified signals. The local oscillator signal is then adjusted with the error signal.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: February 17, 2015
    Assignee: Texas Instruments Incorporated
    Inventors: Nirmal C. Warke, Robert F. Payne, Gerd Schuppener, Brad Kramer
  • Patent number: 8941414
    Abstract: A track-and-hold circuit is provided. This track-and-hold circuit is adapted to track an analog input signal and hold a sampled voltage of the analog input signal at a sampling instant for processing by other circuitry, in response to a track signal that alternates with a hold signal. Preferably, the track-and-hold circuit includes a bi-directional current source that sources and sinks current through a first output node and a second output node, a unity gain amplifier that is coupled to first and second output nodes of the bi-directional current source and that receives the analog input signal, a resistor coupled to an output of the unity gain amplifier, and a capacitor coupled between the resistor and ground. Of interest, however, is the bi-directional current source, which includes a differential input circuit that is adapted to receive the track signal and the hold signal and that is coupled to the first and second output nodes and an RC network that is coupled to the differential input circuit.
    Type: Grant
    Filed: October 18, 2012
    Date of Patent: January 27, 2015
    Assignee: Texas Instruments Incorporated
    Inventors: Marco Corsi, Robert F. Payne
  • Patent number: 8693531
    Abstract: A method for equalizing a received signal is provided. The signal is filtered and transmitted over a channel using an encoding scheme, where the encoding scheme has transmit symbols. This transmitted signal is then shaped such that the filtering and equalization adjust a set of taps in an equalization window so that the taps from the set are substantially equal to one another. Inter-symbol interference is then compensated for in the equalized signal using a speculative DFE with significantly reduced comparator levels.
    Type: Grant
    Filed: October 21, 2011
    Date of Patent: April 8, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Nirmal C. Warke, Robert F. Payne
  • Publication number: 20140072024
    Abstract: A method is provided. A multi-amplitude signal is received and downconverted so as to generate I and Q signals using a local oscillator signal. The I and Q signals are equalized, and the equalized I and Q signals are digitized. First and second gains are adjusted with the second and first digital signals, respectively, and applied to the equalized I and Q signals, respectively. The difference between the first and second amplified signals is determined, and an error signal is generated from the difference between the first and second amplified signals. The local oscillator signal is then adjusted with the error signal.
    Type: Application
    Filed: September 7, 2012
    Publication date: March 13, 2014
    Applicant: Texas Instruments Incorporated
    Inventors: Nirmal C. Warke, Robert F. Payne, Gerd Schuppener, Brad Kramer
  • Patent number: 8649419
    Abstract: A method for compensator for comparator offset is provided. A first propagation delay for a first signal traversing a comparator to a first output terminal of the comparator and a second propagation delay for a second signal traversing the comparator to a second output terminal of the comparator are measured. The first and second propagation delays are then compared to generate a comparison result, and the comparator is adjusted to compensate for an input voltage offset based at least in part on the comparison result.
    Type: Grant
    Filed: December 12, 2011
    Date of Patent: February 11, 2014
    Assignee: Texas Instruments Incorporated
    Inventor: Robert F. Payne
  • Patent number: 8604838
    Abstract: An apparatus for comparing differential input signal inputs is provided. The apparatus comprises a CMOS sense amplifier (which has having a first input terminal, a second input terminal, a first output terminal, and a second output terminal), a first output circuit (which has a first load capacitance), a second output circuit (which has a second load capacitance), and an isolation circuit. The isolation circuit is coupled between the first output terminal of the CMOS sense amplifier and the first output circuit and is coupled between the second output terminal of the CMOS sense amplifier and the second output terminal of the CMOS sense amplifier. The isolation circuit isolates the first and second load capacitances from the CMOS sense amplifier.
    Type: Grant
    Filed: December 12, 2011
    Date of Patent: December 10, 2013
    Assignee: Texas Instruments Incorporated
    Inventor: Robert F. Payne
  • Publication number: 20130265733
    Abstract: An apparatus is provided. There is a circuit assembly with a package substrate and an integrated circuit (IC). The package substrate has a microstrip line, and the IC is secured to the package substrate and is electrically coupled to the microstrip line. A circuit board is also secured to the package substrate. A dielectric waveguide is secured to the circuit board. The dielectric waveguide has a dielectric core that extends into a transition region located between the dielectric waveguide and the microstrip line, and the microstrip line is configured to form a communication link with the dielectric waveguide.
    Type: Application
    Filed: April 4, 2012
    Publication date: October 10, 2013
    Applicant: Texas Instruments Incorporated
    Inventors: Juan A. Herbsommer, Robert F. Payne, Marco Corsi, Baher S. Haroun, Hassan Ali
  • Publication number: 20130265732
    Abstract: An apparatus is provided. There is a circuit assembly with a package substrate and an integrated circuit (IC). The package substrate has a microstrip line, and the IC is secured to the package substrate and is electrically coupled to the microstrip line. A circuit board is also secured to the package substrate. A dielectric waveguide is secured to the circuit board. The dielectric waveguide has a dielectric core that extends into a transition region located between the dielectric waveguide and the microstrip line, and the microstrip line is configured to form a communication link with the dielectric waveguide.
    Type: Application
    Filed: April 4, 2012
    Publication date: October 10, 2013
    Applicant: Texas Instruments Incorporated
    Inventors: Juan A. Herbsommer, Robert F. Payne, Marco Corsi, Baher S. Haroun, Hassan Ali
  • Publication number: 20130265734
    Abstract: An apparatus is provided. There is a circuit assembly with a package substrate and an integrated circuit (IC). The package substrate has a microstrip line, and the IC is secured to the package substrate and is electrically coupled to the microstrip line. A circuit board is also secured to the package substrate. A dielectric waveguide is secured to the circuit board. The dielectric waveguide has a dielectric core that extends into a transition region located between the dielectric waveguide and the microstrip line, and the microstrip line is configured to form a communication link with the dielectric waveguide.
    Type: Application
    Filed: April 4, 2012
    Publication date: October 10, 2013
    Applicant: Texas Instruments Incorporated
    Inventors: Juan A. Herbsommer, Robert F. Payne, Marco Corsi, Baher S. Haroun, Hassan Ali
  • Patent number: 8513980
    Abstract: An apparatus is provided. The apparatus comprises backend circuitry and pairs of redundant input circuits. Each pair of redundant input circuits is configured to form a differential pair of transistors, and each redundant input circuit includes a multiplexer and a set of transistors. The multiplexer is coupled to the backend circuitry, and each transistor from the set of transistors has a first passive electrode, a second passive electrode, and a control electrode. The first passive electrode of each transistor from the set of transistors is coupled to the multiplexer, and the control electrodes from the set of transistors are coupled together.
    Type: Grant
    Filed: October 25, 2011
    Date of Patent: August 20, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Robert F. Payne, Baher S. Haroun
  • Publication number: 20130147520
    Abstract: An apparatus for comparing differential input signal inputs is provided. The apparatus comprises a CMOS sense amplifier (which has having a first input terminal, a second input terminal, a first output terminal, and a second output terminal), a first output circuit (which has a first load capacitance), a second output circuit (which has a second load capacitance), and an isolation circuit. The isolation circuit is coupled between the first output terminal of the CMOS sense amplifier and the first output circuit and is coupled between the second output terminal of the CMOS sense amplifier and the second output terminal of the CMOS sense amplifier. The isolation circuit isolates the first and second load capacitances from the CMOS sense amplifier.
    Type: Application
    Filed: December 12, 2011
    Publication date: June 13, 2013
    Applicant: Texas Instruments Incorporated
    Inventor: Robert F. Payne
  • Publication number: 20130148702
    Abstract: A method for compensator for comparator offset is provided. A first propagation delay for a first signal traversing a comparator to a first output terminal of the comparator and a second propagation delay for a second signal traversing the comparator to a second output terminal of the comparator are measured. The first and second propagation delays are then compared to generate a comparison result, and the comparator is adjusted to compensate for an input voltage offset based at least in part on the comparison result.
    Type: Application
    Filed: December 12, 2011
    Publication date: June 13, 2013
    Applicant: Texas Instruments Incorporated
    Inventor: Robert F. Payne
  • Publication number: 20130101000
    Abstract: A method for equalizing a received signal is provided. The signal is filtered and transmitted over a channel using an encoding scheme, where the encoding scheme has transmit symbols. This transmitted signal is then shaped such that the filtering and equalization adjust a set of taps in an equalization window so that the taps from the set are substantially equal to one another. Inter-symbol interference is then compensated for in the equalized signal using a speculative DFE with significantly reduced comparator levels.
    Type: Application
    Filed: October 21, 2011
    Publication date: April 25, 2013
    Applicant: Texas Instruments Incorporated
    Inventors: Nirmal C. Warke, Robert F. Payne
  • Publication number: 20130099824
    Abstract: An apparatus is provided. The apparatus comprises backend circuitry and pairs of redundant input circuits. Each pair of redundant input circuits is configured to form a differential pair of transistors, and each redundant input circuit includes a multiplexer and a set of transistors. The multiplexer is coupled to the backend circuitry, and each transistor from the set of transistors has a first passive electrode, a second passive electrode, and a control electrode. The first passive electrode of each transistor from the set of transistors is coupled to the multiplexer, and the control electrodes from the set of transistors are coupled together.
    Type: Application
    Filed: October 25, 2011
    Publication date: April 25, 2013
    Applicant: Texas Instruments Incorporated
    Inventors: Robert F. Payne, Baher S. Haroun