Patents by Inventor Robert F. Rioux

Robert F. Rioux has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200261610
    Abstract: According to an aspect of the invention, an indwelling catheter is provided which comprises a catheter shaft. The catheter either comprises a light source or is adapted to receive light from a light source, and is configured such that light is transmitted from the light source into the catheter shaft. Moreover, the catheter shaft is formed of a polymeric material that transmits a quantity of light from the light source that is effective to inactivate microorganisms on a surface of the catheter shaft upon activation of the light source. For example, the light may inactivate the microorganisms directly or in conjunction with a photosensitizer. According to another aspect of the invention, a sterilization method is provided, which comprises activating the light source while the catheter is inserted in a subject.
    Type: Application
    Filed: February 20, 2020
    Publication date: August 20, 2020
    Inventors: Robert F. Rioux, Raymond Lareau, Kristian Dimatteo
  • Publication number: 20200254179
    Abstract: Systems, components, and methods are disclosed for withdrawing drug from a liquid drug container and transferring drug to a medical device. One or more components may have keying features so that only the correct liquid drug container and medical device are accessed, making sure the medical device is filled with the correct drug. A syringe needle hub may have keying features corresponding to keying features on a cap on the liquid drug container and on the medical device. An alignment device facilitates easy-to-operate filling of a medical device. The alignment device aligns a liquid drug container over a fill port of the medical device and can include components for moving the liquid drug container into engagement with the medical device and for automatically initiating drug transfer to the medical device. A retractable skirt or needle cover protects the needle and is unlocked only when the skirt or needle cover is close to or touching the medical device.
    Type: Application
    Filed: April 27, 2020
    Publication date: August 13, 2020
    Inventors: David NAZZARO, Maureen MCCAFFREY, Robert F. RIOUX, Michael Philip GRAFFEO, Ian MCLAUGHLIN, Nicholas JANSKY, Sam ROSENBLUM, David CLARE, Robert D. SCHAEFER, Daniel P. ALLIS, Bryan DILLON, Steven BARLETTA, Bryan CHOATE, Raymond DOBRY, John LEFAVOUR
  • Publication number: 20200246069
    Abstract: The present invention is a minimally invasive articulating configured to be advanced through tortuous anatomy, particularly within a lung, and subsequently deliver at least two separately deployable ablation devices to a target site located at a bifurcated section of the lung (i.e., at a bronchial airway bifurcation). The pair of ablation devices are separately steerable towards respective first and second pathways extending from the bifurcation, such that each of the ablation devices can be positioned on either side of a target tissue proximate the bifurcation. The first and second ablation devices include expandable distal tips configured to transition to a deployed configuration, in which each expands in diameter and is configured to apply a degree of compression and/or RF energy emission to target lung tissue (i.e., diseased tissue, such as cancer or emphysema-related damaged tissue) for subsequent ablation thereof.
    Type: Application
    Filed: July 25, 2018
    Publication date: August 6, 2020
    Inventors: Robert F. RIOUX, Alyssa BAILEY, Tyler WANKE, Ryan M. Bean
  • Patent number: 10729491
    Abstract: A probe includes a shaft and an applicator head designed to treat irregularly-shaped hollow cavities, such as a cavity in breast tissue created by a lumpectomy procedure. The applicator head has a fixed geometry, and a plurality of electrodes can be advanced from an exterior surface of the applicator head in an omnidirectional pattern. The electrodes are used to deliver radiofrequency current or other energy to ablate the marginal tissue.
    Type: Grant
    Filed: September 13, 2016
    Date of Patent: August 4, 2020
    Inventors: Robert F. Rioux, Tyler R. Wanke, Yearnchee Curtis Wang, Adam Piotrowski, Tyler Graf, Aldo Ansel
  • Publication number: 20200208955
    Abstract: A device configured to provide a faster and more accurate measurement of depths of holes for placement of bone screws and fastener for bone implant fixation procedures. The device includes a combination of a bone probe for physical examination of a hole drilled in a bone and a depth gauge member for determining a depth of the hole and providing digital measurement of the depth via a display on the instrument and/or via a wireless exchange of measurement data to a remote computing device, such as a tablet or smartphone. The device may further be connected to a separate neuromonitoring device and be used for nerve sensing and/or nerve stimulation by way of the bone probe. For example, the bone probe may include a conductive material such that the distal probe tip acts as an extension of the neuromonitoring device and may be used to sense and/or stimulate nerves.
    Type: Application
    Filed: January 30, 2020
    Publication date: July 2, 2020
    Inventors: Jordan N. Jacobs, Christopher Wilson, Robert F. Rioux
  • Publication number: 20200166324
    Abstract: A device configured to provide a faster and more accurate measurement of depths of holes for placement of bone screws and fastener for bone implant fixation procedures. The device includes a combination of a bone probe for physical examination of a hole drilled in a bone and a depth gauge member for determining a depth of the hole and providing digital measurement of the depth via a display on the instrument and/or via a wireless exchange of measurement data to a remote computing device, such as a tablet or smartphone. The device may further be connected to a separate neuromonitoring device and be used for nerve sensing and/or nerve stimulation by way of the bone probe. For example, the bone probe may include a conductive material such that the distal probe tip acts as an extension of the neuromonitoring device and may be used to sense and/or stimulate nerves.
    Type: Application
    Filed: January 30, 2020
    Publication date: May 28, 2020
    Inventors: Robert F. Rioux, Christopher Wilson, Victor Simoes, Tyler Wanke
  • Patent number: 10661012
    Abstract: Systems, components, and methods are disclosed for withdrawing drug from a liquid drug container and transferring drug to a medical device. One or more components may have keying features so that only the correct liquid drug container and medical device are accessed, making sure the medical device is filled with the correct drug. A syringe needle hub may have keying features corresponding to keying features on a cap on the liquid drug container and on the medical device. An alignment device facilitates easy-to-operate filling of a medical device. The alignment device aligns a liquid drug container over a fill port of the medical device and can include components for moving the liquid drug container into engagement with the medical device and for automatically initiating drug transfer to the medical device. A retractable skirt or needle cover protects the needle and is unlocked only when the skirt or needle cover is close to or touching the medical device.
    Type: Grant
    Filed: January 4, 2017
    Date of Patent: May 26, 2020
    Assignee: Insulet Corporation
    Inventors: David Nazzaro, Maureen McCaffrey, Robert F. Rioux, Michael Philip Graffeo, Ian McLaughlin, Nicholas Jansky, Sam Rosenblum, David Clare, Robert D. Schaefer, Daniel P. Allis, Bryan Dillon, Steven Barletta, Bryan Choate, Raymond Dobry, John LeFavour
  • Patent number: 10661015
    Abstract: A wearable drug delivery device has a needle assembly and a drug vial arranged side-by-side. This arrangement makes the device compact so that it can be easily worn around a user's wrist, for example. When the user triggers the device to inject a dose of medication like epinephrine, in an orchestrated sequence, a first spring drives the needle assembly downward and inserts a needle into the user while connecting the needle assembly to the drug vial. A second spring then delivers the dose from the drug vial through the needle and into the user. Advantageously, the small form factor encourages the user to wear the device and have lifesaving medication at the ready.
    Type: Grant
    Filed: October 23, 2017
    Date of Patent: May 26, 2020
    Assignee: Summit Street Medical LLC
    Inventors: Robert F. Rioux, Matthew Laplaca, Brian Grasso, Matt Bomes
  • Publication number: 20200138541
    Abstract: The present disclosure includes customized guidance devices in the form of guidance templates configured to fit over a given area of a patient's body and provide guidance during a tissue treatment or tissue removal procedure of that given area, which may include administration of an agent to a target tissue, target tissue biopsy, target tissue resection, or target tissue ablation. The customized guidance templates are generally constructed via an additive manufacturing process (i.e., three-dimensional (3D) printing) or subtractive manufacturing process (i.e., milling) based on a fabrication instruction file, which may include imaging data of the given area of the patient's body in which targeted tissue treatment is to be performed. The fabrication instruction file may further include additional data, such as the type of procedure to be performed (i.e., biopsy of the tissue abnormality, destruction or resection of the tissue abnormality, etc.).
    Type: Application
    Filed: December 19, 2019
    Publication date: May 7, 2020
    Inventors: Venkataramanan Krishnaswamy, Robert F. Rioux, David Danielsen, George Bourne
  • Patent number: 10603393
    Abstract: According to an aspect of the invention, an indwelling catheter is provided which comprises a catheter shaft. The catheter either comprises a light source or is adapted to receive light from a light source, and is configured such that light is transmitted from the light source into the catheter shaft. Moreover, the catheter shaft is formed of a polymeric material that transmits a quantity of light from the light source that is effective to inactivate microorganisms on a surface of the catheter shaft upon activation of the light source. For example, the light may inactivate the microorganisms directly or in conjunction with a photosensitizer. According to another aspect of the invention, a sterilization method is provided, which comprises activating the light source while the catheter is inserted in a subject.
    Type: Grant
    Filed: October 11, 2013
    Date of Patent: March 31, 2020
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Robert F. Rioux, Raymond Lareau, Kristian DiMatteo
  • Patent number: 10578415
    Abstract: A device configured to provide a faster and more accurate measurement of depths of holes for placement of bone screws and fastener for bone implant fixation procedures. The device includes a combination of a bone probe for physical examination of a hole drilled in a bone and a depth gauge member for determining a depth of the hole and providing digital measurement of the depth via a display on the instrument and/or via a wireless exchange of measurement data to a remote computing device, such as a tablet or smartphone. The device may further be connected to a separate neuromonitoring device and be used for nerve sensing and/or nerve stimulation by way of the bone probe. For example, the bone probe may include a conductive material such that the distal probe tip acts as an extension of the neuromonitoring device and may be used to sense and/or stimulate nerves.
    Type: Grant
    Filed: October 17, 2018
    Date of Patent: March 3, 2020
    Assignee: EDGE SURGICAL, INC.
    Inventors: Robert F. Rioux, Christopher Wilson, Victor Simoes, Tyler Wanke
  • Patent number: 10578416
    Abstract: A device configured to provide a faster and more accurate measurement of depths of holes for placement of bone screws and fastener for bone implant fixation procedures. The device includes a combination of a bone probe for physical examination of a hole drilled in a bone and a depth gauge member for determining a depth of the hole and providing digital measurement of the depth via a display on the instrument and/or via a wireless exchange of measurement data to a remote computing device, such as a tablet or smartphone. The device may further be connected to a separate neuromonitoring device and be used for nerve sensing and/or nerve stimulation by way of the bone probe. For example, the bone probe may include a conductive material such that the distal probe tip acts as an extension of the neuromonitoring device and may be used to sense and/or stimulate nerves.
    Type: Grant
    Filed: October 17, 2018
    Date of Patent: March 3, 2020
    Assignee: EDGE SURGICAL, INC.
    Inventors: Jordan N. Jacobs, Christopher Wilson, Robert F. Rioux
  • Patent number: 10555791
    Abstract: The present disclosure includes customized guidance devices in the form of guidance templates configured to fit over a given area of a patient's body and provide guidance during a tissue treatment or tissue removal procedure of that given area, which may include administration of an agent to a target tissue, target tissue biopsy, target tissue resection, or target tissue ablation. The customized guidance templates are generally constructed via an additive manufacturing process (i.e., three-dimensional (3D) printing) or subtractive manufacturing process (i.e., milling) based on a fabrication instruction file, which may include imaging data of the given area of the patient's body in which targeted tissue treatment is to be performed. The fabrication instruction file may further include additional data, such as the type of procedure to be performed (i.e., biopsy of the tissue abnormality, destruction or resection of the tissue abnormality, etc.).
    Type: Grant
    Filed: June 11, 2019
    Date of Patent: February 11, 2020
    Assignee: CairnSurgical, Inc.
    Inventors: Venkataramanan Krishnaswamy, Robert F. Rioux, David Danielsen, George Bourne
  • Publication number: 20200030026
    Abstract: The present invention is directed to a medical device for providing treatment to diseased tissue and cells. The medical device is configured to ablate a target tissue surface, optionally within a resection cavity, and further deliver a therapeutic that targets diseased (e.g., cancer) cells via a marker whose expression is upregulated by the ablation. The ablation directly kills diseased cells associated with the tissue surface. While some diseased cells evade direct ablation, those cells nevertheless upregulate certain cell surface markers in response to the ablation, even while other, healthy or normal cells do not upregulate expression of the marker in response to the ablation. Devices and methods disclosed herein are used to deliver a therapeutic that uses the upregulated cell surface marker to cause the death of those diseased cells.
    Type: Application
    Filed: October 3, 2019
    Publication date: January 30, 2020
    Inventors: Robert F. Rioux, Michelle Hasse, Tyler Wanke
  • Patent number: 10524855
    Abstract: A medical assembly and method are provided to effectively treat abnormal tissue, such as, a tumor. The target tissue is thermally ablate using a suitable source, such as RF or laser energy. A cooling shield is placed in contact with non-target tissue adjacent the target tissue, and actively cooled to conduct thermal energy away from the non-target tissue. In one method, the cooling shield can be placed between two organs, in which case, one of the two organs can comprise the target tissue, and the other of the two organs can comprise the non-target tissue. In this case, the cooling shield may comprise an actively cooled inflatable balloon, which can be disposed between the two organs when deflated, and then inflated. The inflated balloon can be actively cooled by pumping a cooling medium through it. In another method, the cooling shield can be embedded within the non-target tissue. In this case, the cooling shield can comprise one or more needles.
    Type: Grant
    Filed: November 15, 2016
    Date of Patent: January 7, 2020
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Robert J. Garabedian, Robert F. Rioux
  • Publication number: 20190350668
    Abstract: The present disclosure includes customized guidance devices in the form of guidance templates configured to fit over a given area of a patient's body and provide guidance during a tissue treatment or tissue removal procedure of that given area, which may include administration of an agent to a target tissue, target tissue biopsy, target tissue resection, or target tissue ablation. The customized guidance templates are generally constructed via an additive manufacturing process (i.e., three-dimensional (3D) printing) or subtractive manufacturing process (i.e., milling) based on a fabrication instruction file, which may include imaging data of the given area of the patient's body in which targeted tissue treatment is to be performed. The fabrication instruction file may further include additional data, such as the type of procedure to be performed (i.e., biopsy of the tissue abnormality, destruction or resection of the tissue abnormality, etc.).
    Type: Application
    Filed: June 11, 2019
    Publication date: November 21, 2019
    Inventors: Venkataramanan Krishnaswamy, Robert F. Rioux, David Danielsen, George Bourne
  • Patent number: 10470818
    Abstract: The present invention is directed to a medical device for providing treatment to diseased tissue and cells. The medical device is configured to ablate a target tissue surface, optionally within a resection cavity, and further deliver a therapeutic that targets diseased (e.g., cancer) cells via a marker whose expression is upregulated by the ablation. The ablation directly kills diseased cells associated with the tissue surface. While some diseased cells evade direct ablation, those cells nevertheless upregulate certain cell surface markers in response to the ablation, even while other, healthy or normal cells do not upregulate expression of the marker in response to the ablation. Devices and methods disclosed herein are used to deliver a therapeutic that uses the upregulated cell surface marker to cause the death of those diseased cells.
    Type: Grant
    Filed: September 5, 2018
    Date of Patent: November 12, 2019
    Assignee: Innoblative Designs, Inc.
    Inventors: Robert F. Rioux, Michelle Hasse, Tyler Wanke
  • Publication number: 20190321050
    Abstract: A medical device assembly including: an lung reduction device including a vertex, a first arm having an end connected to the vertex, and a second arm having an end connected to vertex, wherein the first and second arms extend into a respective one of airway branches in the lung and the vertex seats upstream of a bifurcation of the airway branches, wherein the first and second arms apply a bias force to the airway branches and thereby reduce a section of the lung near the airway branches; a bronchoscope including a channel housing the lung reduction device and having an opening to the channel through which the lung reduction device is deployed, and a pusher device associated with the bronchoscope and adapted to push the lung reduction device from the working channel to advance the first and second arms into the airway branches.
    Type: Application
    Filed: July 14, 2017
    Publication date: October 24, 2019
    Applicant: Eolo Medical Inc.
    Inventors: Mark GELFAND, Anthony WONG, Robert F. RIOUX, Zoar ENGELMAN
  • Publication number: 20190314084
    Abstract: The invention relates to a tissue ablation system including an ablation device having a deployable applicator head configured to be delivered to a tissue cavity and ablate marginal tissue surrounding the tissue cavity. The deployable applicator head is configured to be delivered to a tissue cavity while in a collapsed configuration and ablate marginal tissue surrounding the tissue cavity while in an expanded configuration.
    Type: Application
    Filed: May 24, 2019
    Publication date: October 17, 2019
    Inventor: Robert F. Rioux
  • Publication number: 20190269420
    Abstract: The invention is a system and a handheld device for use in open or minimally invasive surgical procedures, such as a bone implant fixation procedure. The handheld device is configured to perform various functions during a bone implant fixation procedure, including performing at least one of: penetration of a bone to form a hole or opening for receipt of a screw; neuromonitoring, in cooperation with a neuromonitoring device, of the hole during, or post-, formation of the hole so as to sense any nearby nerves adjacent to the hole that may be in the path of a screw, or otherwise affected, when a screw is placed within the hole; neurostimulation, in cooperation with a neuromonitoring device, of nerves adjacent to the hole during, or post-, formation of the hole; and measuring of a depth of the hole and providing a digital measurement of the depth to assist the surgeon in selecting the appropriate length of screw.
    Type: Application
    Filed: March 5, 2019
    Publication date: September 5, 2019
    Inventors: Tomas Matusaitis, Kenneth Hoos, Christopher Wilson, Robert F. Rioux, Nitin Khanna, Frank Phillips, Jim A. Youssef, Aniruddha Raina, Antonio Belton