Patents by Inventor Robert F. Wilson

Robert F. Wilson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150073469
    Abstract: An embolic protection device comprises an intravascular flow-interactive surface supported by an expandable, substantially cylindrical frame, wherein the frame is configured to expand and engage the luminal surface of the ascending aortic arch, wherein said frame defines a longitudinal channel generally parallel to predominant blood flow vectors, and wherein a flow-modulating element is configured to alter fluid dynamics in a manner that redirects the cranial trajectory of embolic particles originating from the heart through and beyond the longitudinal channel. The embolic protection device may also comprise a plurality of independent or interconnected flow-modulating elements serially spaced apart along the longitudinal axis of the primary vessel. The interstitial space between flow-modulating elements allows blood flow passage between one another in a direction generally perpendicular to the longitudinal channel.
    Type: Application
    Filed: March 15, 2013
    Publication date: March 12, 2015
    Inventors: Farzad Azimpour, Robert F. Wilson
  • Publication number: 20140275892
    Abstract: An intravascular sensor delivery device for measuring a physiological parameter of a patient, such as blood pressure, within a vascular structure or passage. In some embodiments, the device can be used to measure the pressure gradient across a stenotic lesion or heart valve. For example, such a device may be used to measure fractional flow reserve (FFR) across a stenotic lesion in order to assess the severity of the lesion. The sensor delivery device has a distal sleeve configured to pass or slide over a standard medical guidewire. Some distance back from the sensor and distal sleeve, the device separates from the guidewire to permit independent control of the sensor delivery device and the guidewire. The sensor delivery device can be sized to pass over different sizes of guidewires to enable usage in coronary and peripheral arteries, for example.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Applicant: ACIST Medical Systems, Inc.
    Inventors: Dale R. Manstrom, Amy R. Raatikka, Robert F. Wilson, Edward R. Miller, Jung Kwon Pak
  • Patent number: 8771289
    Abstract: Devices and methods for removing a thrombus (clot) from a vascular structure of a living subject. An embodiment of a thrombus removal device comprises first and second annular members, the first annular member being adapted to slide over a guidewire placed in a vascular structure, the second annular member being coupled to the first annular member and having a suction flow path therethrough, the first annular member having an expandable mesh structure disposed at a distal portion thereof, the mesh structure being deployable to an expanded configuration by movement of an actuating element extending along the second annular member. An embodiment of a thrombus removal method comprises advancing the device to position the mesh structure downstream of the thrombus by sliding the first annular member over the guidewire, applying a suction force to the suction flow path of the second annular member, deploying the mesh structure, and retracting the device to cause the mesh structure to engage the thrombus.
    Type: Grant
    Filed: December 21, 2009
    Date of Patent: July 8, 2014
    Assignee: Acist Medical Systems, Inc.
    Inventors: Khader Mohiuddin, Robert F. Wilson
  • Patent number: 8758294
    Abstract: One embodiment provides a method implemented by a powered inflation device to prepare a balloon catheter for use during a medical procedure. In this embodiment, the method includes drawing an amount of medical fluid from a fluid reservoir into the inflation device during a first motorized operation of the inflation device, removing an amount of air from the balloon catheter during a second motorized operation of the inflation device, and injecting the amount of medical fluid from the inflation device into the balloon catheter during a third motorized operation of the inflation device to inflate a balloon located at a distal end of the balloon catheter. The powered inflation device may be a stand-alone device in one embodiment. In one embodiment, the powered inflation device is coupled to an angiographic injector system. When it is coupled to an angiographic injector system, the balloon inflation device and the injector system may be controlled by a common control panel, or console, in one embodiment.
    Type: Grant
    Filed: December 22, 2006
    Date of Patent: June 24, 2014
    Assignee: ACIST Medical Systems, Inc.
    Inventors: Robert Kim, Jiyan Liu, Thomas McPeak, Khader Mohiuddin, Jon Moon, Richard A. Oftedahl, Norman Schwartz, Glenn Toews, Robert F. Wilson
  • Patent number: 8641639
    Abstract: An intravascular sensor delivery device for measuring a physiological parameter of a patient, such as blood pressure, within a vascular structure or passage. In some embodiments, the device can be used to measure the pressure gradient across a stenotic lesion or heart valve, such as a fractional flow reserve (FFR) across a stenotic lesion. The sensor delivery device has a distal sleeve configured to pass or slide over a standard medical guidewire. The sensor delivery device can be sized to pass over different sizes of guidewires to enable usage in coronary and peripheral arteries, for example. The sensing mechanism (sensor) can be a fiber optic pressure sensor, such as a MEMS-based FabryPerot fiber optic pressure sensor, for example, or could employ some other technology, e.g., MEMS capacitive or piezoresistive sensor.
    Type: Grant
    Filed: June 13, 2013
    Date of Patent: February 4, 2014
    Assignee: ACIST Medical Systems, Inc.
    Inventors: Dale R. Manstrom, Amy R. Raatikka, Robert F. Wilson, Edward R. Miller, Jung Kwon Pak
  • Publication number: 20130331714
    Abstract: An intravascular sensor delivery device for measuring a physiological parameter of a patient, such as blood pressure, within a vascular structure or passage. In some embodiments, the device can be used to measure the pressure gradient across a stenotic lesion or heart valve, such as a fractional flow reserve (FFR) across a stenotic lesion. The sensor delivery device has a distal sleeve configured to pass or slide over a standard medical guidewire. The sensor delivery device can be sized to pass over different sizes of guidewires to enable usage in coronary and peripheral arteries, for example. The sensing mechanism (sensor) can be a fiber optic pressure sensor, such as a MEMS-based FabryPerot fiber optic pressure sensor, for example, or could employ some other technology, e.g., MEMS capacitive or piezoresistive sensor.
    Type: Application
    Filed: June 13, 2013
    Publication date: December 12, 2013
    Applicant: ACIST Medical Systems, Inc.
    Inventors: Dale R. Manstrom, Amy R. Raatikka, Robert F. Wilson, Edward R. Miller, Jung Kwon Pak
  • Publication number: 20130324864
    Abstract: An intravascular sensor delivery device for measuring a physiological parameter of a patient, such as blood pressure, within a vascular structure or passage. In some embodiments, the device can be used to measure the pressure gradient across a stenotic lesion or heart valve. For example, such a device may be used to measure fractional flow reserve (FFR) across a stenotic lesion in order to assess the severity of the lesion. The sensor delivery device has a distal sleeve configured to pass or slide over a standard medical guidewire. Some distance back from the sensor and distal sleeve, the device separates from the guidewire to permit independent control of the sensor delivery device and the guidewire. The sensor delivery device can be sized to pass over different sizes of guidewires to enable usage in coronary and peripheral arteries, for example.
    Type: Application
    Filed: August 8, 2013
    Publication date: December 5, 2013
    Applicant: ACIST Medical Systems, Inc.
    Inventors: Dale R. Manstrom, Amy R. Raatikka, Robert F. Wilson, Edward R. Miller, Jung Kwon Pak
  • Publication number: 20130317359
    Abstract: This disclosure provides systems and methods for measuring fluid flow in a vasculature system of a patient. Some systems may include an injection system configured to inject a bolus of fluid into a vessel of a patient. Some systems may include a measurement engine configured to monitor the bolus of fluid in the vessel using measurement data generated by an intravascular measuring device. The measurement engine may determine a travel distance of the bolus of fluid and an elapsed time during which the bolus of fluid traversed the travel distance based on the measurement data. A fluid flow rate (e.g., velocity, volumetric flow) of the vessel may be calculated using the travel distance and the elapsed time.
    Type: Application
    Filed: May 24, 2013
    Publication date: November 28, 2013
    Inventors: Robert F. Wilson, Edward R. Miller, Sidney Donald Nystrom, Kendall R. Waters
  • Patent number: 8590555
    Abstract: The present invention presents various novel approaches to solving the problems inherent in measuring biological pressures in high pressure systems. Thus, to protect a pressure transducer exposed to fluid flows at higher pressures than its overpressure rating, a novel valve is used that closes a protected leg in which the transducer is located. The various exemplary embodiments of such valves each have a high pressure input, one or more low pressure inputs, and an output. In operation, when a high pressure fluid flow occurs at a high pressure input, such valves automatically close the low pressure inputs. Alternatively, a novel transducer system is presented, which automatically limits the effective pressure sensed by a transducer to a certain maximum.
    Type: Grant
    Filed: January 26, 2011
    Date of Patent: November 26, 2013
    Assignee: ACIST Medical Systems, Inc.
    Inventors: Robert F. Wilson, Douglas J. Duchon, Mark Gabbard, Khader Mohiuddin, Thomas J. McPeak
  • Patent number: 8591477
    Abstract: One embodiment of the invention provides a method to purge air or liquid from a powered injection system. In this embodiment, the method includes driving a first pumping device in a first operational mode to inject an amount of a first liquid medium through disposable tubing and a disposable valve, driving the first pumping device in a second operational mode to deform the disposable valve, and driving a second pumping device to inject an amount of a second liquid medium through the disposable tubing and the deformed valve. In one embodiment, the first pumping device comprises a first syringe, the second pumping device comprises a second syringe, and the disposable valve comprises an elastomeric valve.
    Type: Grant
    Filed: February 28, 2012
    Date of Patent: November 26, 2013
    Assignee: ACIST Medical Systems, Inc.
    Inventors: Martin G. Hieb, Khader Mohiuddin, Sidney D. Nystrom, Robert F. Wilson
  • Patent number: 8491473
    Abstract: A medical procedure mat for supporting a patient. A mat having a cushioned substrate and one or more physiological monitoring lines, the physiological monitoring lines having guided portions along the outer edge of the cushioned substrate, and flexible portions operatively coupled to the guided portions, the flexible portions being adapted to extend toward the patient. A draping system for use during medical procedures, including a top and/or bottom drape. A bottom drape including an absorbent material and/or a privacy shield. A top drape including a workbench surface. A mat and draping system in which a bottom and top drape mate to each other and/or to the mat. A draping system providing openings or holes to allow passage of one or more physiological monitoring lines when used in conjunction with the mat.
    Type: Grant
    Filed: February 8, 2008
    Date of Patent: July 23, 2013
    Assignee: ACIST Medical Systems, Inc.
    Inventors: Robert F. Wilson, Robert Kim
  • Patent number: 8485985
    Abstract: An intravascular sensor delivery device for measuring a physiological parameter of a patient, such as blood pressure, within a vascular structure or passage. In some embodiments, the device can be used to measure the pressure gradient across a stenotic lesion or heart valve. For example, such a device may be used to measure fractional flow reserve (FFR) across a stenotic lesion in order to assess the severity of the lesion. The sensor delivery device has a distal sleeve configured to pass or slide over a standard medical guidewire. Some distance back from the sensor and distal sleeve, the device separates from the guidewire to permit independent control of the sensor delivery device and the guidewire. The sensor delivery device can be sized to pass over different sizes of guidewires to enable usage in coronary and peripheral arteries, for example.
    Type: Grant
    Filed: January 13, 2012
    Date of Patent: July 16, 2013
    Assignee: ACIST Medical Systems, Inc.
    Inventors: Dale R. Manstrom, Amy R. Raatikka, Robert F. Wilson, Edward R. Miller, Jung Kwon Pak
  • Publication number: 20130066201
    Abstract: An angiographic injector system and a method of controllably delivering medical fluid to a patient from an angiographic injector system are disclosed. A multiple processor control system is used to actively control the injection process and to monitor sensed functions of the system. The multiple processors provide dual redundancy safety circuits for critical control functions such as syringe motor drive speed and current. A motor/servo-amplifier nested control function is also disclosed. A unique method and apparatus are disclosed for establishing injection parameter default values just prior to an injection procedure that are based on physiological values of the patient to be treated. The injector system uses an interactive display panel that presents sequenced set-up screens to the user and which enables the user to select injection procedures, parameters and other modes of operation directly through the interactive panel.
    Type: Application
    Filed: September 14, 2012
    Publication date: March 14, 2013
    Applicant: ACIST MEDICAL SYSTEMS, INC.
    Inventors: Douglas J. Duchon, James P. Smith, Katherine H. Anderson, Robert F. Wilson, Jiyan Liu
  • Patent number: 8348963
    Abstract: A support, and a method for attaching said support, for providing additional strength to existing regurgitant or prolapsed valve leaflets. The support restores an otherwise non-functioning, or poorly functioning, native valve to a functioning condition, obviating the need for a complete valve removal or replacement. The support may also be applied to a functioning valve leaflet as a prophylactic measure against future failure. The delivery method includes a delivery mechanism for attaching the support to the native valve leaflet.
    Type: Grant
    Filed: July 3, 2003
    Date of Patent: January 8, 2013
    Assignee: HLT, Inc.
    Inventor: Robert F. Wilson
  • Patent number: 8298156
    Abstract: An intravascular sensor delivery device for measuring a physiological parameter of a patient, such as blood pressure, within a vascular structure or passage. In some embodiments, the device can be used to measure the pressure gradient across a stenotic lesion or heart valve. For example, such a device may be used to measure fractional flow reserve (FFR) across a stenotic lesion in order to assess the severity of the lesion. The sensor delivery device has a distal sleeve configured to pass or slide over a standard medical guidewire. Some distance back from the sensor and distal sleeve, the device separates from the guidewire to permit independent control of the sensor delivery device and the guidewire. The sensor delivery device can be sized to pass over different sizes of guidewires to enable usage in coronary and peripheral arteries, for example.
    Type: Grant
    Filed: September 11, 2009
    Date of Patent: October 30, 2012
    Assignee: ACIST Medical Systems, Inc.
    Inventors: Dale R. Manstrom, Amy R. Raatikka, Robert F. Wilson, Edward R. Miller, Jung Kwon Pak
  • Patent number: 8262610
    Abstract: A system and method is provided including a fluid communications network that sends priming and waste fluid to a waste bag, obviating the presence of open fluid containers in an operating room or catheter lab. The fluid communications network is constructed and arranged to allow nearly automated priming and bubble removal, thereby reducing the possibility of operator caused errors in set-up and reducing the time required for set-up. The fluid communications network is useable for attachment to a balloon catheter for inflation thereof. In order to provide greater control and automation of the inflation of the balloon catheter, a conversion kit is provided that can be used to convert an existing automatic injector into an injector useable for automatically controlling the small amount of injection fluid typically associated with balloon catheters.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: September 11, 2012
    Assignee: ACIST Medical Systems, Inc.
    Inventors: Douglas J. Duchon, Robert F. Wilson
  • Publication number: 20120220883
    Abstract: An intravascular sensor delivery device for measuring a physiological parameter of a patient, such as blood pressure, within a vascular structure or passage. In some embodiments, the device can be used to measure the pressure gradient across a stenotic lesion or heart valve, such as a fractional flow reserve (FFR) across a stenotic lesion. The sensor delivery device has a distal sleeve configured to pass or slide over a standard medical guidewire. The sensor delivery device can be sized to pass over different sizes of guidewires to enable usage in coronary and peripheral arteries, for example. The sensing mechanism (sensor) can be a fiber optic pressure sensor, such as a MEMS-based FabryPerot fiber optic pressure sensor, for example, or could employ some other technology, e.g., MEMS capacitive or piezoresistive sensor.
    Type: Application
    Filed: March 13, 2012
    Publication date: August 30, 2012
    Applicant: ACIST MEDICAL SYSTEMS, INC.
    Inventors: Dale R. Manstrom, Amy R. Raatikka, Robert F. Wilson, Edward R. Miller, Jung Kwon Pak
  • Publication number: 20120152391
    Abstract: One embodiment of the invention provides a method to purge air or liquid from a powered injection system. In this embodiment, the method includes driving a first pumping device in a first operational mode to inject an amount of a first liquid medium through disposable tubing and a disposable valve, driving the first pumping device in a second operational mode to deform the disposable valve, and driving a second pumping device to inject an amount of a second liquid medium through the disposable tubing and the deformed valve. In one embodiment, the first pumping device comprises a first syringe, the second pumping device comprises a second syringe, and the disposable valve comprises an elastomeric valve.
    Type: Application
    Filed: February 28, 2012
    Publication date: June 21, 2012
    Applicant: ACIST MEDICAL SYSTEMS, INC.
    Inventors: Martin G. Hieb, Khader Mohiuddin, Sidney D. Nystrom, Robert F. Wilson
  • Publication number: 20120136244
    Abstract: An intravascular sensor delivery device for measuring a physiological parameter of a patient, such as blood pressure, within a vascular structure or passage. In some embodiments, the device can be used to measure the pressure gradient across a stenotic lesion or heart valve. For example, such a device may be used to measure fractional flow reserve (FFR) across a stenotic lesion in order to assess the severity of the lesion. The sensor delivery device has a distal sleeve configured to pass or slide over a standard medical guidewire. Some distance back from the sensor and distal sleeve, the device separates from the guidewire to permit independent control of the sensor delivery device and the guidewire. The sensor delivery device can be sized to pass over different sizes of guidewires to enable usage in coronary and peripheral arteries, for example.
    Type: Application
    Filed: January 13, 2012
    Publication date: May 31, 2012
    Applicant: ACIST MEDICAL SYSTEMS, INC.
    Inventors: Dale R. Manstrom, Amy R. Raatikka, Robert F. Wilson, Edward R. Miller, Jung Kwon Pak
  • Patent number: 8147463
    Abstract: One embodiment of the invention provides a method to purge air or liquid from a powered injection system. In this embodiment, the method includes driving a first pumping device in a first operational mode to inject an amount of a first liquid medium through disposable tubing and a disposable valve, driving the first pumping device in a second operational mode to deform the disposable valve, and driving a second pumping device to inject an amount of a second liquid medium through the disposable tubing and the deformed valve. In one embodiment, the first pumping device comprises a first syringe, the second pumping device comprises a second syringe, and the disposable valve comprises an elastomeric valve.
    Type: Grant
    Filed: May 29, 2007
    Date of Patent: April 3, 2012
    Assignee: ACIST Medical Systems, Inc.
    Inventors: Martin G Hieb, Khader Mohiuddin, Sidney D Nystrom, Robert F Wilson