Patents by Inventor Robert G. Bryant

Robert G. Bryant has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230249417
    Abstract: Systems, methods, and devices of the various embodiments may provide Automated Tape (or Tow) Placement (ATP) systems including machine-based parts that support prepreg tape laying processes to build composite parts. Various embodiments may be applied to materials that may be consolidated during fabrication and/or may be used to fabricate parts that may require post processing steps.
    Type: Application
    Filed: April 14, 2023
    Publication date: August 10, 2023
    Inventor: Robert G. Bryant
  • Patent number: 11628636
    Abstract: Systems, methods, and devices of the various embodiments may provide Automated Tape (or Tow) Placement (ATP) systems including machine-based parts that support prepreg tape laying processes to build composite parts. Various embodiments may be applied to materials that may be consolidated during fabrication and/or may be used to fabricate parts that may require post processing steps.
    Type: Grant
    Filed: July 7, 2021
    Date of Patent: April 18, 2023
    Assignee: UNITED STATES OF AMERICA AS REPRESENTED BY THE ADMINISTRATOR OF NASA
    Inventor: Robert G. Bryant
  • Publication number: 20230009761
    Abstract: Systems, methods, and devices of the various embodiments may provide Automated Tape (or Tow) Placement (ATP) systems including machine-based parts that support prepreg tape laying processes to build composite parts. Various embodiments may be applied to materials that may be consolidated during fabrication and/or may be used to fabricate parts that may require post processing steps.
    Type: Application
    Filed: July 7, 2021
    Publication date: January 12, 2023
    Inventor: Robert G. Bryant
  • Patent number: 10262951
    Abstract: A novel radiation hardened chip package technology protects microelectronic chips and systems in aviation/space or terrestrial devices against high energy radiation. The proposed technology of a radiation hardened chip package using rare earth elements and mulitlayered structure provides protection against radiation bombardment from alpha and beta particles to neutrons and high energy electromagnetic radiation.
    Type: Grant
    Filed: May 16, 2014
    Date of Patent: April 16, 2019
    Assignees: National Institute of Aerospace Associates, The United States of America as represented by the Administrator of NASA
    Inventors: Jin Ho Kang, Godfrey Sauti, Cheol Park, Luke Gibbons, Sheila Ann Thibeault, Sharon E. Lowther, Robert G. Bryant
  • Patent number: 10000036
    Abstract: Boron nitride nanotubes (BNNTs), boron nitride nanoparticles (BNNPs), carbon nontubes (CNTs), graphites, or their combinations, are incorporated into matrices of polymer, ceramic or metals. Fibers, yarns, and woven or nonwoven mates of BNNTs are uses as toughening layers in penetration resistant materials to maximize energy absorption and/or high hardness layers to rebound or deform penetrators. They can be also uses as reinforcing inclusions combining with other polymer matrices to create composite layer like typical reinforcing fibers such as Kevlar®, Spectra®, ceramics and metals. Enhanced wear resistance and prolonged usage time, even under harsh conditions, are achieved by adding boron nitride nanomaterials because both hardness and toughness are increased. Such materials can be used in high temperature environments since the oxidation temperature of BNNTs exceeds 800° C. in air.
    Type: Grant
    Filed: June 29, 2015
    Date of Patent: June 19, 2018
    Assignee: The United States of America as represented by the Administrator of NASA
    Inventors: Jin Ho Kang, Cheol Park, Godfrey Sauti, Michael W. Smith, Kevin C. Jordan, Sharon E. Lowther, Robert G. Bryant
  • Patent number: 9960288
    Abstract: Some implementations provide a device (e.g., solar panel) that includes an active layer and a solar absorbance layer. The active layer includes a first N-type layer and a first P-type layer. The solar absorbance layer is coupled to a first surface of the active layer. The solar absorbance layer includes a polymer composite. In some implementations, the polymer composite includes one of at least metal salts and/or carbon nanotubes. In some implementations, the active layer is configured to provide the photovoltaic effect. In some implementations, the active layer further includes a second N-type layer and a second P-type layer. In some implementations, the active layer is configured to provide the thermoelectric effect. In some implementations, the device further includes a cooling layer coupled to a second surface of the active layer. In some implementations, the cooling layer includes one of at least zinc oxides, indium oxides, and/or carbon nanotubes.
    Type: Grant
    Filed: August 8, 2013
    Date of Patent: May 1, 2018
    Assignee: The United State of America as represented by the Administrator of NASA
    Inventors: Jin Ho Kang, Chase Taylor, Cheol Park, Godfrey Sauti, Luke Gibbons, Iseley Marshall, Sharon E. Lowther, Peter T. Lillehei, Joycelyn S. Harrison, Robert G. Bryant
  • Patent number: 9845269
    Abstract: Multifunctional Boron Nitride nanotube-Boron Nitride (BN—BN) nanocomposites for energy transducers, thermal conductors, anti-penetrator/wear resistance coatings, and radiation hardened materials for harsh environments. An all boron-nitride structured BN—BN composite is synthesized. A boron nitride containing precursor is synthesized, then mixed with boron nitride nanotubes (BNNTs) to produce a composite solution which is used to make green bodies of different forms including, for example, fibers, mats, films, and plates. The green bodies are pyrolized to facilitate transformation into BN—BN composite ceramics. The pyrolysis temperature, pressure, atmosphere and time are controlled to produce a desired BN crystalline structure. The wholly BN structured materials exhibit excellent thermal stability, high thermal conductivity, piezoelectricity as well as enhanced toughness, hardness, and radiation shielding properties.
    Type: Grant
    Filed: March 29, 2013
    Date of Patent: December 19, 2017
    Assignees: National Institute of Aerospace Associates, The United States of America as represented by the Administration of NASA
    Inventors: Jin Ho Kang, Robert G. Bryant, Cheol Park, Godfrey Sauti, Luke Gibbons, Sharon Lowther, Sheila A. Thibeault, Catharine C. Fay
  • Patent number: 9741922
    Abstract: A self-latching piezocomposite actuator includes a plurality of shape memory ceramic fibers. The actuator can be latched by applying an electrical field to the shape memory ceramic fibers. The actuator remains in a latched state/shape after the electrical field is no longer present. A reverse polarity electric field may be applied to reset the actuator to its unlatched state/shape. Applied electric fields may be utilized to provide a plurality of latch states between the latched and unlatched states of the actuator. The self-latching piezocomposite actuator can be used for active/adaptive airfoils having variable camber, trim tabs, active/deformable engine inlets, adaptive or adjustable vortex generators, active optical components such as mirrors that change shapes, and other morphing structures.
    Type: Grant
    Filed: December 16, 2014
    Date of Patent: August 22, 2017
    Assignee: THE UNITED STATES OF AMERICA AS REPRESENTED BY THE ADMINISTRATOR OF THE NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
    Inventors: William K. Wilkie, Robert G. Bryant, Christopher S. Lynch
  • Publication number: 20170190143
    Abstract: Boron nitride nanotubes (BNNTs), boron nitride nanoparticles (BNNPs), carbon nontubes (CNTs), graphites, or their combinations, are incorporated into matrices of polymer, ceramic or metals. Fibers, yarns, and woven or nonwoven mates of BNNTs are uses as toughening layers in penetration resistant materials to maximize energy absorption and/or high hardness layers to rebound or deform penetrators. They can be also uses as reinforcing inclusions combining with other polymer matrices to create composite layer like typical reinforcing fibers such as Kevlar®, Spectra®, ceramics and metals. Enhanced wear resistance and prolonged usage time, even under harsh conditions, are achieved by adding boron nitride nanomaterials because both hardness and toughness are increased. Such materials can be used in high temperature environments since the oxidation temperature of BNNTs exceeds 800° C. in air.
    Type: Application
    Filed: June 29, 2015
    Publication date: July 6, 2017
    Applicant: Jefferson Science Associates, LLC
    Inventors: Jin Ho Kang, Cheol Park, Godfrey Sauti, Michael W. Smith, Kevin C. Jordan, Sharon E. Lowther, Robert G. Bryant
  • Patent number: 9550873
    Abstract: Some implementations provide a composite material that includes a first material and a second material. In some implementations, the composite material is a metamaterial. The first material includes a chiral polymer (e.g., crystalline chiral helical polymer, poly-?-benzyl-L-glutamate (PBLG), poly-L-lactic acid (PLA), polypeptide, and/or polyacetylene). The second material is within the chiral polymer. The first material and the second material are configured to provide an effective index of refraction value for the composite material of 1 or less. In some implementations, the effective index of refraction value for the composite material is negative. In some implementations, the effective index of refraction value for the composite material of 1 or less is at least in a wavelength of one of at least a visible spectrum, an infrared spectrum, a microwave spectrum, and/or an ultraviolet spectrum.
    Type: Grant
    Filed: July 12, 2013
    Date of Patent: January 24, 2017
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Cheol Park, Jin Ho Kang, Keith L. Gordon, Godfrey Sauti, Sharon E. Lowther, Robert G. Bryant
  • Patent number: 9449723
    Abstract: Methods for making a neutron converter layer are provided. The various embodiment methods enable the formation of a single layer neutron converter material. The single layer neutron converter material formed according to the various embodiments may have a high neutron absorption cross section, tailored resistivity providing a good electric field penetration with submicron particles, and a high secondary electron emission coefficient. In an embodiment method a neutron converter layer may be formed by sequential supercritical fluid metallization of a porous nanostructure aerogel or polyimide film. In another embodiment method a neutron converter layer may be formed by simultaneous supercritical fluid metallization of a porous nanostructure aerogel or polyimide film. In a further embodiment method a neutron converter layer may be formed by in-situ metalized aerogel nanostructure development.
    Type: Grant
    Filed: March 10, 2014
    Date of Patent: September 20, 2016
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Cheol Park, Godfrey Sauti, Jin Ho Kang, Sharon E. Lowther, Sheila A. Thibeault, Robert G. Bryant
  • Publication number: 20160233410
    Abstract: A self-latching piezocomposite actuator includes a plurality of shape memory ceramic fibers. The actuator can be latched by applying an electrical field to the shape memory ceramic fibers. The actuator remains in a latched state/shape after the electrical field is no longer present. A reverse polarity electric field may be applied to reset the actuator to its unlatched state/shape. Applied electric fields may be utilized to provide a plurality of latch states between the latched and unlatched states of the actuator. The self-latching piezocomposite actuator can be used for active/adaptive airfoils having variable camber, trim tabs, active/deformable engine inlets, adaptive or adjustable vortex generators, active optical components such as mirrors that change shapes, and other morphing structures.
    Type: Application
    Filed: December 16, 2014
    Publication date: August 11, 2016
    Inventors: WILLIAM K. WILKIE, ROBERT G. BRYANT, CHRISTOPHER S. LYNCH
  • Publication number: 20150069588
    Abstract: A novel radiation hardened chip package technology protects microelectronic chips and systems in aviation/space or terrestrial devices against high energy radiation. The proposed technology of a radiation hardened chip package using rare earth elements and mulitlayered structure provides protection against radiation bombardment from alpha and beta particles to neutrons and high energy electromagnetic radiation.
    Type: Application
    Filed: May 16, 2014
    Publication date: March 12, 2015
    Inventors: Jin Ho Kang, Godfrey Sauti, Cheol Park, Luke Gibbons, Sheila A. Thibeault, Sharon E. Lowther, Robert G. Bryant
  • Publication number: 20140364529
    Abstract: Sequential and simultaneous methods of making a multi-metalized nanocomposite. A method includes providing a porous matrix, dissolving at least a first metal or metalloid precursor and a second metal or metalloid precursor in a supercritical carbon dioxide (CO2) fluid, wherein the first and second metal or metalloid precursors are different, infusing the supercritical CO2 fluid with the dissolved first and second metal or metalloid precursors into the porous matrix, lowering the pressure to trap the infused first and second metal or metalloid precursors in the porous matrix and reducing the first and second metal or metalloid precursors at an elevated temperature to form first and second metal or metalloid nanoparticles in the porous matrix.
    Type: Application
    Filed: April 3, 2014
    Publication date: December 11, 2014
    Inventors: Cheol Park, Jin Ho Kang, Godfrey Sauti, Luke J. Gibbons, Sharon E. Lowther, Robert G. Bryant
  • Publication number: 20140265057
    Abstract: Methods for making a neutron converter layer are provided. The various embodiment methods enable the formation of a single layer neutron converter material. The single layer neutron converter material formed according to the various embodiments may have a high neutron absorption cross section, tailored resistivity providing a good electric field penetration with submicron particles, and a high secondary electron emission coefficient. In an embodiment method a neutron converter layer may be formed by sequential supercritical fluid metallization of a porous nanostructure aerogel or polyimide film. In another embodiment method a neutron converter layer may be formed by simultaneous supercritical fluid metallization of a porous nanostructure aerogel or polyimide film. In a further embodiment method a neutron converter layer may be formed by in-situ metalized aerogel nanostructure development.
    Type: Application
    Filed: March 10, 2014
    Publication date: September 18, 2014
    Applicant: U.S.A. as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Cheol Park, Godfrey Sauti, Jin Ho Kang, Sharon E. Lowther, Sheila A. Thibeault, Robert G. Bryant
  • Publication number: 20140272170
    Abstract: A method of fabricating a composite material includes utilizing a radio frequency plasma process to form a plasma plume comprising nanoparticles. The nanoparticles may comprise boron nitride nanoparticles, silicon carbide nanoparticles, beryllium oxide nanoparticles, or carbon nanoparticles. The nanoparticles may comprise nanotubes or other particles depending on the requirements of a particular application. The nanoparticles are deposited on a substrate by directing a plasma plume towards the substrate. The nanoparticles are formed in the plasma plume immediately prior to being deposited on the substrate. The nanoparticles may form a mechanical bond with the fibers in addition to a chemical bond in the absence of a catalyst. The substrate may comprise a fiber fabric that may optionally be coated with a thin layer of metal. Alternatively, the substrate may comprise a solid material such as a metal sheet or plate.
    Type: Application
    Filed: March 14, 2014
    Publication date: September 18, 2014
    Inventors: Stephen J. Hales, Joel A. Alexa, Brian J. Jensen, Roberto J. Cano, Peter T. Lillehei, Robert G. Bryant
  • Publication number: 20140041705
    Abstract: Some implementations provide a device (e.g., solar panel) that includes an active layer and a solar absorbance layer. The active layer includes a first N-type layer and a first P-type layer. The solar absorbance layer is coupled to a first surface of the active layer. The solar absorbance layer includes a polymer composite. In some implementations, the polymer composite includes one of at least metal salts and/or carbon nanotubes. In some implementations, the active layer is configured to provide the photovoltaic effect. In some implementations, the active layer further includes a second N-type layer and a second P-type layer. In some implementations, the active layer is configured to provide the thermoelectric effect. In some implementations, the device further includes a cooling layer coupled to a second surface of the active layer. In some implementations, the cooling layer includes one of at least zinc oxides, indium oxides, and/or carbon nanotubes.
    Type: Application
    Filed: August 8, 2013
    Publication date: February 13, 2014
    Applicants: National Institute of Aerospace, Space Administration
    Inventors: Jin Ho Kang, Chase Taylor, Cheol Park, Godfrey Sauti, Luke Gibbons, Iseley Marshall, Sharon E. Lowther, Peter T. Lillehei, Joycelyn S. Harrison, Robert G. Bryant
  • Publication number: 20140017480
    Abstract: Some implementations provide a composite material that includes a first material and a second material. In some implementations, the composite material is a metamaterial. The first material includes a chiral polymer (e.g., crystalline chiral helical polymer, poly-?-benzyl-L-glutamate (PBLG), poly-L-lactic acid (PLA), polypeptide, and/or polyacetylene). The second material is within the chiral polymer. The first material and the second material are configured to provide an effective index of refraction value for the composite material of 1 or less. In some implementations, the effective index of refraction value for the composite material is negative. In some implementations, the effective index of refraction value for the composite material of 1 or less is at least in a wavelength of one of at least a visible spectrum, an infrared spectrum, a microwave spectrum, and/or an ultraviolet spectrum.
    Type: Application
    Filed: July 12, 2013
    Publication date: January 16, 2014
    Inventors: Cheol Park, Jin Ho Kang, Keith L. Gordon, Godfrey Sauti, Sharon E. Lowther, Robert G. Bryant
  • Patent number: 7647771
    Abstract: A thermally driven piston assembly's housing has (i) a first material slidingly fitted therein, and (ii) at least one plug of a second material slidingly fitted therein and abutting the first material. The first material is one (e.g., a liquid crystal elastomer) that undergoes a stiffness change and/or a dimensional change when subjected to a temperature change in the temperature range of interest. When subjected to the temperature change while in the housing, the first material is restricted to changing dimensionally along a single dimension. The second material retains its shape and size throughout the temperature range of interest. As a result, the plug moves in the housing in correspondence with the dimensional change of the first material or the plug's movement is damped by the stiffness change of the first material.
    Type: Grant
    Filed: March 8, 2006
    Date of Patent: January 19, 2010
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Donald L. Thomsen, III, Robert G. Bryant
  • Publication number: 20070237977
    Abstract: A flexible thin metal film system is made by directly depositing an electrically-conductive metal onto the metal surface of a self-metallized polymeric film.
    Type: Application
    Filed: April 7, 2006
    Publication date: October 11, 2007
    Applicant: United States of America as represented by the Administrator of the National Aeronautics and Spac
    Inventors: Donald L. Thomsen, Robert G. Bryant