Patents by Inventor Robert G. Messerschmidt

Robert G. Messerschmidt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10337984
    Abstract: A measurement apparatus comprises optical components arranged to provide parallel measurements of a biological sample. The parallel sample measurements provide improved accuracy with lower detection limit thresholds. The parallel measurements may comprise one or more of Raman spectroscopy measurements or infrared spectroscopy measurements. The parallel measurements can be combined with a light source. In many embodiments, the light source comprises one or more wavelengths corresponding to resonance frequencies of one or more molecules of the sample, such as wavelengths of ultraviolet light. The wavelengths of light corresponding to resonance frequencies can provide an increased signal to noise ratio. The parallel array optical configuration can be combined with wavelengths of light corresponding to resonance frequencies in order to provide increased measurement accuracy and detection of metabolites.
    Type: Grant
    Filed: January 11, 2016
    Date of Patent: July 2, 2019
    Assignee: NUEON, INC.
    Inventor: Robert G. Messerschmidt
  • Publication number: 20180136193
    Abstract: Biomarkers of high blood pressure are measured to identify high blood pressure of the subject based on one or more biomarkers. In many embodiments, the response of the biomarker to blood pressure occurs over the course of at least an hour, such that the high blood pressure identification is based on a cumulative effect of physiology of the subject over a period of time. The methods and apparatus of identifying high blood pressure with biomarkers have the advantage of providing improved treatment of the subject, as the identified biomarker can be related to an effect of the high blood pressure on the subject, such as a biomarker corresponding to central blood pressure. The sample can be subjected to increases in one or more of pressure or temperatures, and changes in the blood sample measured over time.
    Type: Application
    Filed: December 19, 2017
    Publication date: May 17, 2018
    Inventors: Robert G. Messerschmidt, Howland D.T. Jones
  • Publication number: 20170350814
    Abstract: Biomarkers of high blood pressure are measured to identify high blood pressure of the subject based on one or more biomarkers. In many embodiments, the response of the biomarker to blood pressure occurs over the course of at least an hour, such that the high blood pressure identification is based on a cumulative effect of physiology of the subject over a period of time. The methods and apparatus of identifying high blood pressure with biomarkers have the advantage of providing improved treatment of the subject, as the identified biomarker can be related to an effect of the high blood pressure on the subject, such as a biomarker corresponding to central blood pressure. The sample can be subjected to increases in one or more of pressure or temperatures, and changes in the blood sample measured over time.
    Type: Application
    Filed: June 12, 2017
    Publication date: December 7, 2017
    Inventors: Robert G. MESSERSCHMIDT, Howland D. T. JONES
  • Publication number: 20160123869
    Abstract: A measurement apparatus comprises optical components arranged to provide parallel measurements of a biological sample. The parallel sample measurements provide improved accuracy with lower detection limit thresholds. The parallel measurements may comprise one or more of Raman spectroscopy measurements or infrared spectroscopy measurements. The parallel measurements can be combined with a light source. In many embodiments, the light source comprises one or more wavelengths corresponding to resonance frequencies of one or more molecules of the sample, such as wavelengths of ultraviolet light. The wavelengths of light corresponding to resonance frequencies can provide an increased signal to noise ratio. The parallel array optical configuration can be combined with wavelengths of light corresponding to resonance frequencies in order to provide increased measurement accuracy and detection of metabolites.
    Type: Application
    Filed: January 11, 2016
    Publication date: May 5, 2016
    Inventor: Robert G. Messerschmidt
  • Publication number: 20150338338
    Abstract: Biomarkers of high blood pressure are measured to identify high blood pressure of the subject based on one or more biomarkers. In many embodiments, the response of the biomarker to blood pressure occurs over the course of at least an hour, such that the high blood pressure identification is based on a cumulative effect of physiology of the subject over a period of time. The methods and apparatus of identifying high blood pressure with biomarkers have the advantage of providing improved treatment of the subject, as the identified biomarker can be related to an effect of the high blood pressure on the subject, such as a biomarker corresponding to central blood pressure. The sample can be subjected to increases in one or more of pressure or temperatures, and changes in the blood sample measured over time.
    Type: Application
    Filed: February 27, 2015
    Publication date: November 26, 2015
    Inventors: Robert G. MESSERSCHMIDT, Howland D. T. JONES
  • Patent number: 9157804
    Abstract: A correlation interferometric spectroscopy devices are described that detect the spectral characteristics of a sample wherein device consists of an electromagnetic radiation source for exciting a sample with photons; and a detector adapted to detect an arrival time of a photon at the detector and further adapted to detect a delay between the arrival time of different photons. The device may further consist of an autocorrelator adapted to analyze the between the arrival of photons at the detector. The device may also be used together with other spectral detection and characterizing systems, such as Raman spectroscopy and attenuated total reflectance spectroscopy. Also provided herein are methods, systems, and kits incorporating the correlation interferometric spectroscopy device.
    Type: Grant
    Filed: January 21, 2010
    Date of Patent: October 13, 2015
    Assignee: Rare Light, Inc.
    Inventor: Robert G. Messerschmidt
  • Publication number: 20150164353
    Abstract: An apparatus and method for obtaining a physiological measurement associated with a user using a portable device is disclosed herein. Information displayed on a touch-sensitive display of the portable device specifies the contact area(s) on the portable device for a user to touch. One or more areas on the portable device and/or a detachable device connected to the portable device comprise conductive areas for measuring the resistance or impedance of the user's body between those conductive areas.
    Type: Application
    Filed: February 20, 2015
    Publication date: June 18, 2015
    Inventors: Robert G. Messerschmidt, Christopher D. Brown
  • Patent number: 8988372
    Abstract: An apparatus and method for obtaining a physiological measurement associated with a user using a portable device is disclosed herein. Information displayed on a touch-sensitive display of the portable device specifies the contact area(s) on the portable device for a user to touch. One or more areas on the portable device and/or a detachable device connected to the portable device comprise conductive areas for measuring the resistance or impedance of the user's body between those conductive areas.
    Type: Grant
    Filed: February 22, 2012
    Date of Patent: March 24, 2015
    Assignee: Avolonte Health LLC
    Inventors: Robert G. Messerschmidt, Christopher D. Brown
  • Patent number: 8970838
    Abstract: Described are systems and methods for variable angle Raman spectroscopy, in which electromagnetic radiation will be caused to intersect the sample under investigation at a plurality of angles of incidence, so as to provide Raman scattering spectra at each angle. One example use of measuring such spectra at multiple angles of incidence is to enable evaluation at a plurality of depths within the sample. In many implementations, the range of the angles of incidence will include, and extend to either side, of the critical angle.
    Type: Grant
    Filed: April 29, 2011
    Date of Patent: March 3, 2015
    Assignee: Avolonte Health LLC
    Inventor: Robert G. Messerschmidt
  • Publication number: 20140051941
    Abstract: An apparatus and method for obtaining one or more physiological measurements associated with a user using a portable device alone or in combination with a detachable unit is disclosed herein. One or more of different types of sensor sets are included in one or more planar surfaces of the portable device and/or the detachable unit in communication with the portable device. The accuracy of physiological measurements is automatically ensured by the fixed positioning of the sensors relative to each other. A variety of different physiological measurements can be obtained using a portable device that users normally carry around and use on a daily basis, instead of requiring use of a separate/dedicated medical device.
    Type: Application
    Filed: August 17, 2012
    Publication date: February 20, 2014
    Applicant: Rare Light, Inc.
    Inventor: Robert G. Messerschmidt
  • Publication number: 20140051939
    Abstract: An apparatus and method for obtaining one or more physiological measurements associated with a user using ear-located sensors is disclosed herein. One or more of different types of sensors are configured to engage a user's ear. In some cases, the sensors will be included in one or both of a pair of earphones to capture physiological parameters. A portable device is configured to be in communication with the earphones to receive physiological parameters from the sensor(s) therein, and to potentially provide control signals to the sensors or other components in the earphones. The portable device determines physiological measurements corresponding to the received physiological parameters. The portable device is also configured to provide a user interface to interact with the user regarding the physiological measurements.
    Type: Application
    Filed: August 17, 2012
    Publication date: February 20, 2014
    Applicant: Rare Light, Inc.
    Inventor: Robert G. Messerschmidt
  • Publication number: 20140051940
    Abstract: An apparatus and method for obtaining one or more physiological measurements associated with a user using ear-located sensors is disclosed herein. One or more of different types of sensors are configured to engage a user's ear. In some cases, the sensors will be included in one or both of a pair of earphones to capture physiological parameters. A portable device is configured to be in communication with the earphones to receive physiological parameters from the sensor(s) therein, and potentially to provide control signals to the sensors or other components in the earphones. The portable device determines physiological measurements corresponding to the received physiological parameters. The portable device is also configured to provide a user interface to interact with the user regarding the physiological measurements.
    Type: Application
    Filed: August 17, 2012
    Publication date: February 20, 2014
    Applicant: Rare Light, Inc.
    Inventor: Robert G. Messerschmidt
  • Publication number: 20130215042
    Abstract: An apparatus and method for obtaining a physiological measurement associated with a user using a portable device is disclosed herein. Information displayed on a touch-sensitive display of the portable device specifies the contact area(s) on the portable device for a user to touch. One or more areas on the portable device and/or a detachable device connected to the portable device comprise conductive areas for measuring the resistance or impedance of the user's body between those conductive areas.
    Type: Application
    Filed: February 22, 2012
    Publication date: August 22, 2013
    Inventors: Robert G. Messerschmidt, Christopher D. Brown
  • Publication number: 20120274934
    Abstract: Described are systems and methods for variable angle Raman spectroscopy, in which electromagnetic radiation will be caused to intersect the sample under investigation at a plurality of angles of incidence, so as to provide Raman scattering spectra at each angle. One example use of measuring such spectra at multiple angles of incidence is to enable evaluation at a plurality of depths within the sample. In many implementations, the range of the angles of incidence will include, and extend to either side, of the critical angle.
    Type: Application
    Filed: April 29, 2011
    Publication date: November 1, 2012
    Applicant: Avolonte Health LLC
    Inventor: Robert G. Messerschmidt
  • Publication number: 20110001965
    Abstract: Spectroscopy apparatuses oriented to the critical angle of the sample are described that detecting the spectral characteristics of a sample wherein the apparatus consists of an electromagnetic radiation source adapted to excite a sample with electromagnetic radiation introduced to the sample at an angle of incidence at or near a critical angle of the sample; a transmitting crystal in communication with the electromagnetic radiation source and the sample, the transmitting crystal having a high refractive index adapted to reflect the electromagnetic radiation internally; a reflector adapted to introduce the electromagnetic radiation to the sample at or near an angle of incidence near the critical angle between the transmitting crystal and sample; and a detector for detecting the electromagnetic radiation from the sample. Also, provided herein are methods, systems, and kits incorporating the peri-critical reflectance spectroscopy apparatus.
    Type: Application
    Filed: January 30, 2009
    Publication date: January 6, 2011
    Inventor: Robert G. Messerschmidt
  • Patent number: 7623906
    Abstract: An improved method and apparatus for diffuse reflectance spectroscopy. A specular control device is provided that can discriminate between diffusely reflected light that is reflected from selected depths or layers within the tissue. The specular control device permits a spectroscopic analyzer to receive the diffusely reflected light that is reflected from, for example, a first layer or depth within the tissue, while preventing the remaining diffusely reflected light from reaching the spectroscopic analyzer. Furthermore, the specular control device may prevent the specularly reflected light (e.g. surface reflected light) from reaching the spectroscopic analyzer.
    Type: Grant
    Filed: November 12, 2002
    Date of Patent: November 24, 2009
    Assignee: InLight Solutions, Inc
    Inventors: M. Ries Robinson, Robert G. Messerschmidt
  • Patent number: 7161679
    Abstract: An interferometer spectrometer that has reduced alignment sensitivity is described herein. Parallelism of an output ray pair formed by a single input ray is not affected by variations in relative alignment of the components. In comparison to other compensated interferometer designs, lateral separation errors in the output ray pair due to optical component misalignment are reduced. The reduced alignment sensitivity may be accomplished by utilizing simple planar components that are common to both light paths. The reduced alignment sensitivity and simplicity in design provides a more compact and more robust interferometer, with reduced manufacturing costs associated therewith. An elliptical field of view light source that utilizes an array of collimator lenses is also described. The light source provides a more compact design than a single circular collimator lens of the same area, and is suitable for single channel or multi-channel use.
    Type: Grant
    Filed: December 4, 2002
    Date of Patent: January 9, 2007
    Assignee: Inlight Solutions, Inc. Merly RioGrande Technologies, Inc.
    Inventors: Robert G. Messerschmidt, Russell E. Abbink
  • Publication number: 20040241736
    Abstract: A method and apparatus for determining an attribute of a sample from a spectrum of the sample. The invention comprises samplers and methods of sampling that provide controlled optical pathlengths through the sample, increasing the accuracy of the attribute determinations. The invention is applicable, for example, in determining analyte concentrations in biological samples, such as concentrations of analytes such as glucose in human blood.
    Type: Application
    Filed: May 21, 2004
    Publication date: December 2, 2004
    Inventors: Shonn P. Hendee, Howland D. T. Jones, Dashiell A. Birnkrant, Robert D. Johnson, Russell E. Abbink, Robert G. Messerschmidt
  • Publication number: 20040092822
    Abstract: An improved method and apparatus for diffuse reflectance spectroscopy. A specular control device is provided that can discriminate between diffusely reflected light that is reflected from selected depths or layers within the tissue. The specular control device permits a spectroscopic analyzer to receive the diffusely reflected light that is reflected from, for example, a first layer or depth within the tissue, while preventing the remaining diffusely reflected light from reaching the spectroscopic analyzer. Furthermore, the specular control device may prevent the specularly reflected light (e.g. surface reflected light) from reaching the spectroscopic analyzer.
    Type: Application
    Filed: November 12, 2002
    Publication date: May 13, 2004
    Inventors: M. Ries Robinson, Robert G. Messerschmidt
  • Publication number: 20040027659
    Abstract: A sample holder comprising a material that is functionally transparent to wavelengths of light that are important to visual analysis of the sample, and to wavelengths of light that are important to spectroscopic analysis of the sample. Embodiments of the invention are amenable to total internal reflection of light useful in spectroscopic analysis. Specific materials and configurations are described. Methods and apparatuses using such sample holders for measurement of sample properties, including cancer screening of cervical samples, are described.
    Type: Application
    Filed: July 28, 2003
    Publication date: February 12, 2004
    Inventors: Robert G. Messerschmidt, Howland D. T. Jones, Robert D. Johnson, V. Gerald Grafe