Patents by Inventor Robert George Zimmerman

Robert George Zimmerman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100266417
    Abstract: A method for applying a NiAl based bond coat and a diffusion aluminide coating to a metal substrate is disclosed. The method comprises providing a superalloy substrate, the superalloy substrate having an external surface; and optionally cleaning the external surface of the superalloy substrate. The method further comprises coating a portion of the external surface of the superalloy substrate, by physical vapor deposition with a layer of a NiAl based metal alloy, wherein the deposited NiAl based metal alloy includes a controlled amount of about 6 to 25 weight percent aluminum and additionally the deposited aluminum level of the NiAl based metal alloy is controlled to be about 50-100% of its final level after aluminizing to form a coated external portion; and subsequently, simultaneously aluminizing the coated external portion and a different surface of the superalloy substrate.
    Type: Application
    Filed: August 7, 2007
    Publication date: October 21, 2010
    Inventors: Mark Daniel Gorman, Brett Allen Boutwell, Robert George Zimmerman, JR.
  • Patent number: 7494576
    Abstract: Apparatus for electroplating a workpiece includes an unassembled electroplating anode assembly having weldable first and second structural anode members. The first structural anode member includes a positioning slot. The second structural anode member includes a positioning tab disposable in the positioning slot. A method for making an electroplating anode assembly includes obtaining an electroplating-anode-assembly first structural anode member having a positioning slot and obtaining an electroplating-anode-assembly second structural anode member having a positioning tab. The method also includes locating the positioning tab in the positioning slot and welding together the first and second structural anode members.
    Type: Grant
    Filed: August 26, 2004
    Date of Patent: February 24, 2009
    Assignee: General Electric Company
    Inventors: Mark Alan Rosenzweig, Robert George Zimmerman, Jr., John D. Evans, Sr.
  • Patent number: 7413778
    Abstract: A method for applying a NiAl based bond coat and a diffusion aluminide coating to a metal substrate comprises, in part, coating a portion of the external surface of the superalloy substrate, by physical vapor deposition with a layer of a NiAl based metal alloy, wherein the deposited NiAl based metal alloy includes a controlled amount of about 6 to 25 weight percent aluminum, wherein the deposited aluminum level of the NiAl based metal alloy is controlled to be about 50-100% of its final level after aluminizing to form a coated external portion; and subsequently, simultaneously aluminizing the coated external portion and a different surface of the superalloy substrate.
    Type: Grant
    Filed: December 5, 2005
    Date of Patent: August 19, 2008
    Assignee: General Electric Company
    Inventors: Mark Daniel Gorman, Brett Allen Boutwell, Robert George Zimmerman, Jr.
  • Publication number: 20080080978
    Abstract: Methods for coating a turbine engine rotor component involving depositing at least one platinum group metal selected from platinum, palladium, rhodium, ruthenium, iridium and osmium on the rotor component, and heating the rotor component to a temperature of from about 500° C. to about 800° C.
    Type: Application
    Filed: October 3, 2006
    Publication date: April 3, 2008
    Inventors: Robert George Zimmerman, John Frederick Ackerman, Joseph Aloysius Heaney, Bangalore Aswatha Nagaraj, Michael James Weimer
  • Patent number: 7216485
    Abstract: A method for adjusting the airflow in a turbine component having a plurality of airflow holes. The method comprises the step of depositing an overlay metallic coating on the surface of the turbine component in a manner such that at least some of the airflow holes are partially filled such that the volume of the partially filled airflow holes is changed so as to adjust the airflow through the turbine component. Also provided is a turbine component having a plurality of airflow holes, at least some of the airflow holes being partially filled with the overlay metallic coating to change the volume thereof so as to adjust the airflow through the turbine component.
    Type: Grant
    Filed: September 3, 2004
    Date of Patent: May 15, 2007
    Assignee: General Electric Company
    Inventors: James Michael Caldwell, Thomas John Tomlinson, Robert George Zimmerman, Jr., Raymond William Heidorn, Gilbert Farmer
  • Patent number: 6921251
    Abstract: A turbine engine rotor component, such as a compressor or turbine disk or seal element, is protected from corrosion by depositing an aluminum or chromium coating on the component. The deposition can be performed by a vapor deposition process, such as metal organic chemical vapor deposition (MOCVD), to a coating thickness of from about 0.2 to about 50 microns, typically from about 0.5 to about 3 microns. In one embodiment, the method is conducted in a vapor coating container having a hollow interior coating chamber, and includes the steps of loading the coating chamber with the component to be coated; and flowing a tri-alkyl aluminum or chromium carbonyl coating gas into the loaded coating chamber at a specified temperature, pressure, and time to deposit an aluminum or chromium coating on the surface of the component. The coated component is then heated in a nonoxidizing atmosphere to a specified temperature to form an aluminide or chromide coating on the surface.
    Type: Grant
    Filed: September 5, 2003
    Date of Patent: July 26, 2005
    Assignee: General Electric Company
    Inventors: John Frederick Ackerman, Michael James Weimer, Joseph Aloysius Heaney, Robert George Zimmerman, Jr., Bangalore Aswatha Nagaraj, Brian Thomas Hazel, Nripendra Nath Das
  • Patent number: 6916429
    Abstract: A process for removing aluminosilicate-based material (e.g., “CMAS”) from a substrate is described. The material is treated with an aqueous composition containing at least one acid having the formula HxAF6, in which A is Si, Ge, Ti, Zr, Al, and Ga; and x is 1-6. Treatment of the substrate is often carried out by immersion in an aqueous bath. The process is also very effective for removing CMAS-type material from cavities in the substrate, e.g., cooling holes in a gas turbine component. Related compositions are also described.
    Type: Grant
    Filed: October 21, 2002
    Date of Patent: July 12, 2005
    Assignee: General Electric Company
    Inventors: Lawrence Bernard Kool, Stephen Joseph Ferrigno, Robert George Zimmerman, Jr., Mark Alan Rosenzweig, Curtis Alan Johnson
  • Publication number: 20040074873
    Abstract: A process for removing aluminosilicate-based material (e.g., “CMAS”) from a substrate is described. The material is treated with an aqueous composition containing at least one acid having the formula HXAF6, in which A is Si, Ge, Ti, Zr, Al, and Ga; and x is 1-6. Treatment of the substrate is often carried out by immersion in an aqueous bath. The process is also very effective for removing CMAS-type material from cavities in the substrate, e.g., cooling holes in a gas turbine component. Related compositions are also described.
    Type: Application
    Filed: October 21, 2002
    Publication date: April 22, 2004
    Applicant: General Electric Company
    Inventors: Lawrence Bernard Kool, Stephen Joseph Ferrigno, Robert George Zimmerman, Mark Alan Rosenzweig, Curtis Alan Johnson
  • Patent number: 6379749
    Abstract: A method of removing a ceramic coating (18), and particularly zirconia-containing thermal barrier coating (TBC) materials such as yttria-stabilized zirconia (YSZ), that has been either intentionally or unintentionally deposited on the surface of a component (10). The method entails subjecting the ceramic coating (18) to an aqueous solution containing an acid fluoride salt, such as ammonium bifluoride (NH4HF2) or sodium bifluoride (NaHF2), and a corrosion inhibitor. The method is capable of completely removing the ceramic coating (18) without removing or damaging the underlying substrate material, which may include a metallic bond coat (16).
    Type: Grant
    Filed: December 5, 2000
    Date of Patent: April 30, 2002
    Assignee: General Electric Company
    Inventors: Robert George Zimmerman, Jr., William Clarke Brooks, Roger Dale Wustman, John Douglas Evans, Sr.
  • Publication number: 20010009246
    Abstract: A method of removing a ceramic coating (18), and particularly zirconia-containing thermal barrier coating (TBC) materials such as yttria-stabilized zirconia (YSZ), that has been either intentionally or unintentionally deposited on the surface of a component (10). The method entails subjecting the ceramic coating (18) to an aqueous solution containing an acid fluoride salt, such as ammonium bifluoride (NH4HF2) or sodium bifluoride (NaHF2), and a corrosion inhibitor. The method is capable of completely removing the ceramic coating (18) without removing or damaging the underlying substrate material, which may include a metallic bond coat (16).
    Type: Application
    Filed: December 5, 2000
    Publication date: July 26, 2001
    Inventors: Robert George Zimmerman, William Clarke Brooks, Roger Dale Wustman, John Douglas Evans