Patents by Inventor Robert H. Hall

Robert H. Hall has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7939273
    Abstract: A system and method for detecting mass based on a frequency differential of a resonating micromachined structure, such as a cantilever beam. A high aspect ratio cantilever beam is coated with an immobilized binding partner that couples to a predetermined cell or molecule. A first resonant frequency is determined for the cantilever having the immobilized binding partner. Upon exposure of the cantilever to a solution that binds with the binding partner, the mass of the cantilever beam increases. A second resonant frequency is determined and the differential resonant frequency provides the basis for detecting the target cell or molecule. The cantilever may be driven externally or by ambient noise. The frequency response of the beam can be determined optically using reflected light and two photodetectors or by interference using a single photodetector.
    Type: Grant
    Filed: March 11, 2010
    Date of Patent: May 10, 2011
    Assignee: Cornell Research Foundation, Inc.
    Inventors: Harold G. Craighead, Bojan (Rob) Ilic, David A. Czaplewski, Robert H. Hall
  • Publication number: 20110020834
    Abstract: A system and method for detecting mass based on a frequency differential of a resonating micromachined structure, such as a cantilever beam. A high aspect ratio cantilever beam is coated with an immobilized binding partner that couples to a predetermined cell or molecule. A first resonant frequency is determined for the cantilever having the immobilized binding partner. Upon exposure of the cantilever to a solution that binds with the binding partner, the mass of the cantilever beam increases. A second resonant frequency is determined and the differential resonant frequency provides the basis for detecting the target cell or molecule. The cantilever may be driven externally or by ambient noise. The frequency response of the beam can be determined optically using reflected light and two photodetectors or by interference using a single photodetector.
    Type: Application
    Filed: March 11, 2010
    Publication date: January 27, 2011
    Applicant: Cornell Research Foundation, Inc.
    Inventors: Harold G. Craighead, Bojan (Rob) Ilic, David Alan Czaplewski, Robert H. Hall
  • Patent number: 7691583
    Abstract: A system and method for detecting mass based on a frequency differential of a resonating micromachined structure, such as a cantilever beam. A high aspect ratio cantilever beam is coated with an immobilized binding partner that couples to a predetermined cell or molecule. A first resonant frequency is determined for the cantilever having the immobilized binding partner. Upon exposure of the cantilever to a solution that binds with the binding partner, the mass of the cantilever beam increases. A second resonant frequency is determined and the differential resonant frequency provides the basis for detecting the target cell or molecule. The cantilever may be driven externally or by ambient noise. The frequency response of the beam can be determined optically using reflected light and two photodetectors or by interference using a single photodetector.
    Type: Grant
    Filed: January 31, 2006
    Date of Patent: April 6, 2010
    Assignee: Cornell Research Foundation, Inc.
    Inventors: Harold G. Craighead, Bojan Ilic, David Alan Czaplewski, Robert H. Hall
  • Patent number: 7148017
    Abstract: A system and method for detecting mass based on a frequency differential of a resonating micromachined structure, such as a cantilever beam. A high aspect ratio cantilever beam is coated with an immobilized binding partner that couples to a predetermined cell or molecule. A first resonant frequency is determined for the cantilever having the immobilized binding partner. Upon exposure of the cantilever to a solution that binds with the binding partner, the mass of the cantilever beam increases. A second resonant frequency is determined and the differential resonant frequency provides the basis for detecting the target cell or molecule. The cantilever may be driven externally or by ambient noise. The frequency response of the beam can be determined optically using reflected light and two photodetectors or by interference using a single photodetector.
    Type: Grant
    Filed: November 14, 2000
    Date of Patent: December 12, 2006
    Assignee: Cornell Research Foundation, Inc.
    Inventors: Harold G. Craighead, Bojan Ilic, David Alan Czaplewski, Robert H. Hall
  • Patent number: 5756293
    Abstract: The present invention provides isolated nucleic acid sequences corresponding to the hlyA gene, the hlyB gene and the intergenic region between the hlyA gene and the hlyB gene which are present in enterohemorrhagic E. coli. In addition, the present invention provides methods for detecting enterohemorrhagic E. coli by targeting the hlyA gene, the hlyB gene, the intergenic region between the hlyA and the hlyB genes, combinations thereof, or fragments thereof. Such methods rely on nucleic acid probes and amplification primers specific for subsequences of the hlyA gene, the hlyB gene, the intergenic region between the hlyA and the hlyB genes, combination thereof or, fragments thereof. As such, the present provides nucleic acid probes and amplification primers which can be used for the rapid, sensitive and specific amplification and detection of enterohemorrhagic E. coli. In addition, the present invention provides kits embracing the above aspects.
    Type: Grant
    Filed: September 11, 1995
    Date of Patent: May 26, 1998
    Assignee: The United States of America as represented by the Department of Health and Human Services
    Inventors: Robert H. Hall, Jian-Guo Xu
  • Patent number: 5475098
    Abstract: The present invention provides isolated nucleic acid sequences corresponding to the hlyA gene, the hlyB gene and the intergenic region between the hlyA gene and the hlyB gene which are present in enterohemorrhagic E. coli. In addition, the present invention provides methods for detecting enterohemorrhagic E. coli by targeting the hlyA gene, the hlyB gene, the intergenic region between the hlyA and the hlyB genes, combinations thereof, or fragments thereof. Such methods rely on nucleic acid probes and amplification primers specific for subsequences of the hlyA gene, the hlyB gene, the intergenic region between the hlyA and the hlyB genes, combination thereof or, fragments thereof. As such, the present provides nucleic acid probes and amplification primers which can be used for the rapid, sensitive and specific amplification and detection of enterohemorrhagic E. coli. In addition, the present invention provides kits embracing the above aspects.
    Type: Grant
    Filed: June 14, 1994
    Date of Patent: December 12, 1995
    Assignee: The United States of America as represented by the Department of Health and Human Services
    Inventors: Robert H. Hall, Jian-Guo Xu
  • Patent number: D279583
    Type: Grant
    Filed: January 10, 1983
    Date of Patent: July 9, 1985
    Inventor: Robert H. Hall