Patents by Inventor Robert H. Lin

Robert H. Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12113259
    Abstract: Low-loss terahertz switches with nanometer resolution positioning and feedback are disclosed. In one embodiment, the switch uses a U-bend waveguide surrounded by an electromagnetic band gap and is implemented in a fully metal-machined fashion in combination with a piezo-electric motor and an optical linear encoder. In another embodiment, the switch comprises a MEMS device.
    Type: Grant
    Filed: June 21, 2022
    Date of Patent: October 8, 2024
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Goutam Chattopadhyay, Robert H. Lin, Sven L. Van Berkel, Sofia Rahiminejad
  • Patent number: 12107044
    Abstract: Embodiments include a substrate and a method of forming the substrate. A substrate includes an interlayer dielectric and conductive traces in the interlayer dielectric (ILD). The conductive traces may include a first conductive trace surrounded by a second and third conductive traces. The substrate also includes a photoresist block in a region of the ILD. The region may be directly surrounded by the ILD and first conductive trace, and the photoresist block may be between the first conductive trace. The photoresist block may have a top surface that is substantially coplanar to top surfaces of the ILD and conductive traces. The photoresist block may have a width substantially equal to a width of the conductive traces. The photoresist block may be in the first conductive trace and between the second and third conductive traces. The photoresist block may include a metal oxide core embedded with organic ligands.
    Type: Grant
    Filed: April 19, 2019
    Date of Patent: October 1, 2024
    Assignee: Intel Corporation
    Inventors: Marie Krysak, Kevin L. Lin, Robert Bristol, Charles H. Wallace
  • Patent number: 12087867
    Abstract: A solid-state device chip including diodes (generating a higher or lower frequency output through frequency multiplication or mixing of the input frequency) and a novel on-chip diplexing design that allows combination of two or more multiplier or mixer structures operating at different frequency bands within the 50-5000 GHz range within a same chip and/or waveguide. The on-chip diplexing design consists of a single-substrate multiplier chip with two or more multiplying structures each one containing 2 or more Schottky diodes. The diodes in each structure are tuned to one portion of the target frequency band, resulting in the two or more structures working together as a whole as a large broadband multiplier or mixer. Thus, an increase in bandwidth from 10-15% (current state-of-the-art) to at least 40% is achieved. Depending on the target frequencies, each subset of diodes within the chip can be designed to work either as a doubler or a tripler.
    Type: Grant
    Filed: November 9, 2020
    Date of Patent: September 10, 2024
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Jose Vicente Siles Perez, Choonsup Lee, Robert H. Lin, Alejandro Peralta
  • Publication number: 20230027356
    Abstract: Low-loss terahertz switches with nanometer resolution positioning and feedback are disclosed. In one embodiment, the switch uses a U-bend waveguide surrounded by an electromagnetic band gap and is implemented in a fully metal-machined fashion in combination with a piezo-electric motor and an optical linear encoder. In another embodiment, the switch comprises a MEMS device.
    Type: Application
    Filed: June 21, 2022
    Publication date: January 26, 2023
    Applicant: California Institute of Technology
    Inventors: Goutam Chattopadhyay, Robert H. Lin, Sven L. Van Berkel, Sofia Rahiminejad
  • Publication number: 20210218368
    Abstract: A solid-state device chip including diodes (generating a higher or lower frequency output through frequency multiplication or mixing of the input frequency) and a novel on-chip diplexing design that allows combination of two or more multiplier or mixer structures operating at different frequency bands within the 50-5000 GHz range within a same chip and/or waveguide. The on-chip diplexing design consists of a single-substrate multiplier chip with two or more multiplying structures each one containing 2 or more Schottky diodes. The diodes in each structure are tuned to one portion of the target frequency band, resulting in the two or more structures working together as a whole as a large broadband multiplier or mixer. Thus, an increase in bandwidth from 10-15% (current state-of-the-art) to at least 40% is achieved. Depending on the target frequencies, each subset of diodes within the chip can be designed to work either as a doubler or a tripler.
    Type: Application
    Filed: November 9, 2020
    Publication date: July 15, 2021
    Applicant: California Institute of Technology
    Inventors: Jose Vicente Siles Perez, Choonsup Lee, Robert H. Lin, Alejandro Peralta
  • Patent number: 10100858
    Abstract: A silicon alignment pin is used to align successive layer of component made in semiconductor chips and/or metallic components to make easier the assembly of devices having a layered structure. The pin is made as a compressible structure which can be squeezed to reduce its outer diameter, have one end fit into a corresponding alignment pocket or cavity defined in a layer of material to be assembled into a layered structure, and then allowed to expand to produce an interference fit with the cavity. The other end can then be inserted into a corresponding cavity defined in a surface of a second layer of material that mates with the first layer. The two layers are in registry when the pin is mated to both. Multiple layers can be assembled to create a multilayer structure. Examples of such devices are presented.
    Type: Grant
    Filed: October 28, 2016
    Date of Patent: October 16, 2018
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Cecile Jung-Kubiak, Theodore Reck, Bertrand Thomas, Robert H. Lin, Alejandro Peralta, John J. Gill, Choonsup Lee, Jose V. Siles, Risaku Toda, Goutam Chattopadhyay, Ken B. Cooper, Imran Mehdi
  • Patent number: 10075151
    Abstract: A solid state device chip including diodes (generating a higher frequency output through frequency multiplication of the input frequency) and a novel on-chip power combining design. Together with the on-chip power combining, the chip has increased efficiency because the diodes' anodes, being micro-fabricated simultaneously on the same patch of a GaAs wafer under identical conditions, are very well balanced. The diodes' GaAs heterostructure and the overall chip geometry are designed to be optimized for high power operation. As a result of all these features, the device can generate record-setting power having a signal frequency in the F-band and W-band (30% conversion efficiency).
    Type: Grant
    Filed: November 25, 2015
    Date of Patent: September 11, 2018
    Assignee: California Institute of Technology
    Inventors: Jose Vicente Siles Perez, Choonsup Lee, Goutam Chattopadhyay, Ken B. Cooper, Imran Mehdi, Robert H. Lin, Alejandro Peralta
  • Publication number: 20170045065
    Abstract: A silicon alignment pin is used to align successive layer of component made in semiconductor chips and/or metallic components to make easier the assembly of devices having a layered structure. The pin is made as a compressible structure which can be squeezed to reduce its outer diameter, have one end fit into a corresponding alignment pocket or cavity defined in a layer of material to be assembled into a layered structure, and then allowed to expand to produce an interference fit with the cavity. The other end can then be inserted into a corresponding cavity defined in a surface of a second layer of material that mates with the first layer. The two layers are in registry when the pin is mated to both. Multiple layers can be assembled to create a multilayer structure. Examples of such devices are presented.
    Type: Application
    Filed: October 28, 2016
    Publication date: February 16, 2017
    Inventors: Cecile JUNG-KUBIAK, Theodore RECK, Bertrand THOMAS, Robert H. LIN, Alejandro PERALTA, John J. GILL, Choonsup LEE, Jose V. SILES, Risaku TODA, Goutam CHATTOPADHYAY, Ken B. COOPER, Imran MEHDI
  • Patent number: 9512863
    Abstract: A silicon alignment pin is used to align successive layers of components made in semiconductor chips and/or metallic components to make easier the assembly of devices having a layered structure. The pin is made as a compressible structure which can be squeezed to reduce its outer diameter, have one end fit into a corresponding alignment pocket or cavity defined in a layer of material to be assembled into a layered structure, and then allowed to expand to produce an interference fit with the cavity. The other end can then be inserted into a corresponding cavity defined in a surface of a second layer of material that mates with the first layer. The two layers are in registry when the pin is mated to both. Multiple layers can be assembled to create a multilayer structure. Examples of such devices are presented.
    Type: Grant
    Filed: April 26, 2013
    Date of Patent: December 6, 2016
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Cecile Jung-Kubiak, Theodore Reck, Bertrand Thomas, Robert H. Lin, Alejandro Peralta, John J. Gill, Choonsup Lee, Jose V. Siles, Risaku Toda, Goutam Chattopadhyay, Ken B. Cooper, Imran Mehdi
  • Patent number: 9461352
    Abstract: A multi-step silicon etching process has been developed to fabricate silicon-based terahertz (THz) waveguide components. This technique provides precise dimensional control across multiple etch depths with batch processing capabilities. Nonlinear and passive components such as mixers and multipliers waveguides, hybrids, OMTs and twists have been fabricated and integrated into a small silicon package. This fabrication technique enables a wafer-stacking architecture to provide ultra-compact multi-pixel receiver front-ends in the THz range.
    Type: Grant
    Filed: April 15, 2014
    Date of Patent: October 4, 2016
    Assignee: California Institute of Technology
    Inventors: Cecile Jung-Kubiak, Theodore Reck, Goutam Chattopadhyay, Jose Vicente Siles Perez, Robert H. Lin, Imran Mehdi, Choonsup Lee, Ken B. Cooper, Alejandro Peralta
  • Publication number: 20160149562
    Abstract: A solid state device chip including diodes (generating a higher frequency output through frequency multiplication of the input frequency) and a novel on-chip power combining design. Together with the on-chip power combining, the chip has increased efficiency because the diodes' anodes, being micro-fabricated simultaneously on the same patch of a GaAs wafer under identical conditions, are very well balanced. The diodes' GaAs heterostructure and the overall chip geometry are designed to be optimized for high power operation. As a result of all these features, the device can generate record-setting power having a signal frequency in the F-band and W-band (30% conversion efficiency).
    Type: Application
    Filed: November 25, 2015
    Publication date: May 26, 2016
    Inventors: Jose Vicente Siles Perez, Choonsup Lee, Goutam Chattopadhyay, Ken B. Cooper, Imran Mehdi, Robert H. Lin, Alejandro Peralta
  • Publication number: 20140340178
    Abstract: A multi-step silicon etching process has been developed to fabricate silicon-based terahertz (THz) waveguide components. This technique provides precise dimensional control across multiple etch depths with batch processing capabilities. Nonlinear and passive components such as mixers and multipliers waveguides, hybrids, OMTs and twists have been fabricated and integrated into a small silicon package. This fabrication technique enables a wafer-stacking architecture to provide ultra-compact multi-pixel receiver front-ends in the THz range.
    Type: Application
    Filed: April 15, 2014
    Publication date: November 20, 2014
    Applicant: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Cecile Jung-Kubiak, Theodore Reck, Goutam Chattopadhyay, Jose Vicente Siles Perez, Robert H. Lin, Imran Mehdi, Choonsup Lee, Ken B. Cooper, Alejandro Peralta
  • Publication number: 20140147192
    Abstract: A silicon alignment pin is used to align successive layers of components made in semiconductor chips and/or metallic components to make easier the assembly of devices having a layered structure. The pin is made as a compressible structure which can be squeezed to reduce its outer diameter, have one end fit into a corresponding alignment pocket or cavity defined in a layer of material to be assembled into a layered structure, and then allowed to expand to produce an interference fit with the cavity. The other end can then be inserted into a corresponding cavity defined in a surface of a second layer of material that mates with the first layer. The two layers are in registry when the pin is mated to both. Multiple layers can be assembled to create a multilayer structure. Examples of such devices are presented.
    Type: Application
    Filed: April 26, 2013
    Publication date: May 29, 2014
    Applicant: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Cecile Jung-Kubiak, Theodore Reck, Bertrand Thomas, Robert H. Lin, Alejandro Peralta, John J. Gill, Choonsup Lee, Jose V. Siles, Risaku Toda, Goutam Chattopadhyay, Ken B. Cooper, Imran Mehdi
  • Patent number: 8693973
    Abstract: A coplanar waveguide (CPW) based subharmonic mixer working at 670 GHz using GaAs Schottky diodes. One example of the mixer has a LO input, an RF input and an IF output. Another possible mixer has a LO input, and IF input and an RF output. Each input or output is connected to a coplanar waveguide with a matching network. A pair of antiparallel diodes provides a signal at twice the LO frequency, which is then mixed with a second signal to provide signals having sum and difference frequencies. The output signal of interest is received after passing through a bandpass filter tuned to the frequency range of interest.
    Type: Grant
    Filed: May 2, 2012
    Date of Patent: April 8, 2014
    Assignee: California Institute of Technology
    Inventors: Goutam Chattopadhyay, Erich T. Schlecht, Choonsup Lee, Robert H. Lin, John J. Gill, Seth Sin, Imran Mehdi
  • Publication number: 20120280742
    Abstract: A coplanar waveguide (CPW) based subharmonic mixer working at 670 GHz using GaAs Schottky diodes. One example of the mixer has a LO input, an RF input and an IF output. Another possible mixer has a LO input, and IF input and an RF output. Each input or output is connected to a coplanar waveguide with a matching network. A pair of antiparallel diodes provides a signal at twice the LO frequency, which is then mixed with a second signal to provide signals having sum and difference frequencies. The output signal of interest is received after passing through a bandpass filter tuned to the frequency range of interest.
    Type: Application
    Filed: May 2, 2012
    Publication date: November 8, 2012
    Applicant: California Institute of Technology
    Inventors: Goutam Chattopadhyay, Erich T. Schlecht, Choonsup Lee, Robert H. Lin, John J. Gill, Seth Sin, Imran Mehdi