Patents by Inventor Robert Herrick

Robert Herrick has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080135931
    Abstract: A semiconductor power device includes a drift region of a first conductivity type, a well region extending above the drift region and having a second conductivity type opposite the first conductivity type, an active trench extending through the well region and into the drift region, source regions having the first conductivity type formed in the well region adjacent the active trench, and a first termination trench extending below the well region and disposed at an outer edge of an active region of the device. The sidewalls and bottom of the active trench are lined with dielectric material, and substantially filled with a first conductive layer forming an upper electrode and a second conductive layer forming a lower electrode, the upper electrode being disposed above the lower electrode and separated therefrom by inter-electrode dielectric material.
    Type: Application
    Filed: February 15, 2008
    Publication date: June 12, 2008
    Inventors: Ashok Challa, Alan Elbanhawy, Thomas E. Grebs, Nathan L. Kraft, Dean E. Probst, Rodney S. Ridlay, Steven P. Sapp, Qi Wang, Chongman Yun, J.G. Lee, Peter H. Wilson, Joseph A. Yedinak, J.Y. Jung, H.C. Jang, Babak S. Sanl, Richard Stokes, Gary M. Dolny, John Mytych, Becky Losee, Adam Selsley, Robert Herrick, James J. Murphy, Gordon K. Madson, Bruce D. Marchant, Christopher L. Rexer, Christopher B. Kocon, Debra S. Woolsey
  • Publication number: 20080138953
    Abstract: A method for forming thick oxide at the bottom of a trench formed in a semiconductor substrate includes forming a conformal oxide film that fills the trench and covers a top surface of the substrate. and etching the oxide film off the top surface of the substrate and inside the trench to leave a substantially flat layer of oxide having a target thickness at the bottom of the trench. The oxide film can be deposited by sub-atmospheric chemical vapor deposition processes, directional Tetraethoxysilate (TEOS) processes, or high density plasma deposition processes that form a thicker oxide at the bottom of the trench than on the sidewalls of the trench.
    Type: Application
    Filed: February 15, 2008
    Publication date: June 12, 2008
    Inventors: Ashok Challa, Alan Elbanhawy, Dean E. Probst, Steven P. Sapp, Peter H. Wilson, Babak S. Sani, Becky Losee, Robert Herrick, James J. Murphy, Gordon K. Madson, Bruce D. Marchant, Christopher B. Kocon, Debra S. Woolsey
  • Patent number: 7385248
    Abstract: A field effect transistor (FET) includes a trench extending into a silicon region of a first conductive type. A shield insulated from the silicon region by a shield dielectric extends in a lower portion of the trench. A gate electrode is in the trench over but insulated from the shield electrode by an inter-poly dielectric (IPD). The IPD comprises a conformal layer of dielectric and a thermal oxide layer.
    Type: Grant
    Filed: August 9, 2005
    Date of Patent: June 10, 2008
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Robert Herrick, Dean Probst, Fred Session
  • Publication number: 20080090339
    Abstract: A method of forming shielded gate trench FET includes the following steps. A trench is formed in a silicon region of a first conductivity type. A shield electrode is formed in a bottom portion of the trench. An inter-poly dielectric (IPD) including a layer of thermal oxide and a layer of conformal dielectric is formed along an upper surface of the shield electrode. A gate dielectric lining at least upper trench sidewalls is formed. A gate electrode is formed in the trench such that the gate electrode is insulated from the shield electrode by the IPD.
    Type: Application
    Filed: December 7, 2007
    Publication date: April 17, 2008
    Inventors: Robert Herrick, Dean Probst, Fred Session
  • Patent number: 7344943
    Abstract: A semiconductor device is formed as follows. A plurality of trenches is formed in a silicon layer. An insulating layer filling an upper portion of each trench is formed. Exposed silicon is removed from adjacent the trenches to expose an edge of the insulating layer in each trench, such that the exposed edge of the insulating layer in each trench defines a portion of each contact opening formed between every two adjacent trenches.
    Type: Grant
    Filed: April 20, 2005
    Date of Patent: March 18, 2008
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Robert Herrick, Becky Losee, Dean Probst
  • Publication number: 20070299515
    Abstract: An implant capable of forming a differential image in an eye is shown. The implant comprises an elongated member having a pair of spaced ends. The elongated member is formed of a dimension to be inserted into and/or passed through a punctum opening of an eye and into the canaliculus. The implant comprises an energy obstructing material, such as for example a pigment comprising titanium dioxide, which is responsive to the application of an energy wave in the visible light range which, upon everting of an eyelid of an eye and exposing the implant to the energy wave, forms a differential image pattern showing the location of the implant in the canaliculus of the eye.
    Type: Application
    Filed: November 30, 2006
    Publication date: December 27, 2007
    Inventor: Robert Herrick
  • Publication number: 20070135914
    Abstract: An implant capable of forming a differential image in an eye is shown. The implant comprises an elongated member having a pair of spaced ends wherein one of the pair of ends includes a distal section that extends in a direction substantially parallel to the central axis. The elongated member and the distal section are formed of a dimension to be inserted into and/or passed through a punctum opening of an eye and into the canaliculus. The implant incorporates into at least one of the elongated member and the distal section an energy obstructing material responsive to the application of an energy wave, such as an energy wave in the form of sound waves vibrating at frequencies greater than 20,000 cycles per second or electromagnetic radiation, which upon everting of an eyelid of an eye and exposing the implant to an appropriate energy wave, forms a differential image pattern showing the location of the implant in the eye.
    Type: Application
    Filed: November 30, 2006
    Publication date: June 14, 2007
    Inventor: Robert Herrick
  • Publication number: 20070037327
    Abstract: A shielded gate trench FET is formed as follows. A trench is formed in a silicon region of a first conductivity type, the trench including a shield electrode insulated from the silicon region by a shield dielectric. An inter-poly dielectric (IPD) including a layer of thermal oxide and a layer of conformal dielectric is formed along an upper surface of the shield electrode. A gate dielectric lining at least upper trench sidewalls is formed. A gate electrode is formed in the trench such that the gate electrode is insulated from the shield electrode by the IPD.
    Type: Application
    Filed: August 9, 2005
    Publication date: February 15, 2007
    Inventors: Robert Herrick, Dean Probst, Fred Session
  • Publication number: 20060214222
    Abstract: Various embodiments for improved power devices as well as their methods of manufacture, packaging and circuitry incorporating the same for use in a wide variety of power electronic applications are disclosed. One aspect of the invention combines a number of charge balancing techniques and other techniques for reducing parasitic capacitance to arrive at different embodiments for power devices with improved voltage performance, higher switching speed, and lower on-resistance. Another aspect of the invention provides improved termination structures for low, medium and high voltage devices. Improved methods of fabrication for power devices are provided according to other aspects of the invention. Improvements to specific processing steps, such as formation of trenches, formation of dielectric layers inside trenches, formation of mesa structures and processes for reducing substrate thickness, among others, are presented.
    Type: Application
    Filed: May 31, 2006
    Publication date: September 28, 2006
    Inventors: Ashok Challa, Alan Elbanhawy, Thomas Grebs, Nathan Kraft, Dean Probst, Rodney Ridley, Steven Sapp, Qi Wang, Chongman Yun, J. Lee, Peter Wilson, Joseph Yedinak, J. Jung, H. Jang, Babak Sani, Richard Stokes, Gary Dolny, John Mytych, Becky Losee, Adam Selsley, Robert Herrick, James Murphy, Gordon Madson, Bruce Marchant, Christopher Rexer, Christopher Kocon, Debra Woolsey
  • Publication number: 20060214221
    Abstract: Various embodiments for improved power devices as well as their methods of manufacture, packaging and circuitry incorporating the same for use in a wide variety of power electronic applications are disclosed. One aspect of the invention combines a number of charge balancing techniques and other techniques for reducing parasitic capacitance to arrive at different embodiments for power devices with improved voltage performance, higher switching speed, and lower on-resistance. Another aspect of the invention provides improved termination structures for low, medium and high voltage devices. Improved methods of fabrication for power devices are provided according to other aspects of the invention. Improvements to specific processing steps, such as formation of trenches, formation of dielectric layers inside trenches, formation of mesa structures and processes for reducing substrate thickness, among others, are presented.
    Type: Application
    Filed: May 31, 2006
    Publication date: September 28, 2006
    Inventors: Ashok Challa, Alan Elbanhawy, Thomas Grebs, Nathan Kraft, Dean Probst, Rodney Ridley, Steven Sapp, Qi Wang, Chongman Yun, J.G. Lee, Peter Wilson, Joseph Yedinak, J.Y. Jung, H.C. Jang, Babak Sani, Richard Stokes, Gary Dolny, John Mytych, Becky Losee, Adam Selsley, Robert Herrick, James Murphy, Gordon Madson, Bruce Marchant, Christopher Rexer, Christopher Kocon, Debra Woolsey
  • Patent number: 7078296
    Abstract: Self-aligned trench MOSFETs and methods for manufacturing the same are disclosed. By having a self-aligned structure, the number of MOSFETS per unit area—the cell density—is increased, making the MOSFETs cheaper to produce. The self-aligned structure for the MOSFET is provided by making the sidewall of the overlying isolation dielectric layer substantially aligned with the sidewall of the gate conductor. Such an alignment can be made through any number of methods such as using a dual dielectric process, using a selective dielectric oxidation process, using a selective dielectric deposition process, or a spin-on-glass dielectric process.
    Type: Grant
    Filed: January 16, 2002
    Date of Patent: July 18, 2006
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Duc Chau, Becky Losee, Bruce Marchant, Dean Probst, Robert Herrick, James Murphy
  • Publication number: 20050191794
    Abstract: A semiconductor device is formed as follows. A plurality of trenches is formed in a silicon layer. An insulating layer filling an upper portion of each trench is formed. Exposed silicon is removed from adjacent the trenches to expose an edge of the insulating layer in each trench, such that the exposed edge of the insulating layer in each trench defines a portion of each contact opening formed between every two adjacent trenches.
    Type: Application
    Filed: April 20, 2005
    Publication date: September 1, 2005
    Inventors: Robert Herrick, Becky Losee, Dean Probst
  • Publication number: 20050175051
    Abstract: A method for detecting a passivation pinhole includes forming an oxide vertical cavity surface-emitting laser (VCSEL) having an oxidation cavity, forming a passivation layer over a surface of the oxidation cavity, exposing the oxide VCSEL to an etchant vapor, and inspecting the oxide VCSEL for a defect caused by the etchant vapor.
    Type: Application
    Filed: March 31, 2005
    Publication date: August 11, 2005
    Inventors: Gregory DeBrabander, Robert Herrick, Suning Xie, Matthew Slater
  • Publication number: 20050167742
    Abstract: Various embodiments for improved power devices as well as their methods of manufacture, packaging and circuitry incorporating the same for use in a wide variety of power electronic applications are disclosed. One aspect of the invention combines a number of charge balancing techniques and other techniques for reducing parasitic capacitance to arrive at different embodiments for power devices with improved voltage performance, higher switching speed, and lower on-resistance. Another aspect of the invention provides improved termination structures for low, medium and high voltage devices. Improved methods of fabrication for power devices are provided according to other aspects of the invention. Improvements to specific processing steps, such as formation of trenches, formation of dielectric layers inside trenches, formation of mesa structures and processes for reducing substrate thickness, among others, are presented.
    Type: Application
    Filed: December 29, 2004
    Publication date: August 4, 2005
    Applicant: Fairchild Semiconductor Corp.
    Inventors: Ashok Challa, Alan Elbanhawy, Thomas Grebs, Nathan Kraft, Dean Probst, Rodney Ridley, Steven Sapp, Qi Wang, Chongman Yun, J.G. Lee, Peter Wilson, Joseph Yedinak, J.Y. Jung, H.C. Jang, Babak Sani, Richard Stokes, Gary Dolny, John Mytych, Becky Losee, Adam Selsley, Robert Herrick, James Murphy, Gordon Madson, Bruce Marchant, Christopher Rexer, Christopher Kocon, Debra Woolsey
  • Patent number: 6916745
    Abstract: In accordance with an embodiment of the present invention, a semiconductor device is formed as follows. An exposed surface area of a silicon layer where silicon can be removed is defined. A portion of the silicon layer is removed to form a middle section of a trench extending into the silicon layer from the exposed surface area of the silicon layer. Additional exposed surface areas of the silicon layer where silicon can be removed are defined. Additional portions of the silicon layer are removed to form outer sections of the trench such that the outer sections of the trench extend into the silicon layer from the additional exposed surface areas of the silicon layer. The middle section of the trench extends deeper into the silicon layer than the outer sections of the trench.
    Type: Grant
    Filed: May 20, 2003
    Date of Patent: July 12, 2005
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Robert Herrick, Becky Losee, Dean Probst
  • Publication number: 20040232481
    Abstract: In accordance with an embodiment of the present invention, a semiconductor device is formed as follows. An exposed surface area of a silicon layer where silicon can be removed is defined. A portion of the silicon layer is removed to form a middle section of a trench extending into the silicon layer from the exposed surface area of the silicon layer. Additional exposed surface areas of the silicon layer where silicon can be removed are defined. Additional portions of the silicon layer are removed to form outer sections of the trench such that the outer sections of the trench extend into the silicon layer from the additional exposed surface areas of the silicon layer. The middle section of the trench extends deeper into the silicon layer than the outer sections of the trench.
    Type: Application
    Filed: May 20, 2003
    Publication date: November 25, 2004
    Inventors: Robert Herrick, Becky Losee, Dean Probst
  • Patent number: 6599384
    Abstract: A method and apparatus are provided for separating a discrete element from a first substrate web, moving at a first speed, and placing the discrete element on a second substrate web, moving at a second speed. The apparatus includes a first station, wherein perforations are made in the first substrate web, and a second station, wherein the discrete element is separated from the first substrate web at a line of perforations and the discrete element is transferred to a positioned on the second substrate web. The first station includes a perforation cutter assembly and conveyer assembly. The perforation cutter assembly includes first and second rollers with a cutting blade, with a discontinuous edge, and an anvil surface, respectively, to make perforations in the first substrate web. The second station includes a separation and transfer mechanism having separation and transfer segments for separating and transferring the discrete element from the first substrate web to the second substrate web.
    Type: Grant
    Filed: June 12, 2001
    Date of Patent: July 29, 2003
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: James Dell Milner, Robert Herrick Collins, James Grant Lee, David Allen Palzewicz
  • Publication number: 20030132480
    Abstract: Self-aligned trench MOSFETs and methods for manufacturing the same are disclosed. By having a self-aligned structure, the number of MOSFETS per unit area—the cell density—is increased, making the MOSFETs cheaper to produce. The self-aligned structure for the MOSFET is provided by making the sidewall of the overlying isolation dielectric layer substantially aligned with the sidewall of the gate conductor. Such an alignment can be made through any number of methods such as using a dual dielectric process, using a selective dielectric oxidation process, using a selective dielectric deposition process, or a spin-on-glass dielectric process.
    Type: Application
    Filed: January 16, 2002
    Publication date: July 17, 2003
    Inventors: Duc Chau, Becky Losee, Bruce Marchant, Dean Probst, Robert Herrick, James Murphy
  • Patent number: 6523595
    Abstract: A method and apparatus are provided for separating a discrete element from a first substrate web, moving at a first speed, and placing the discrete element on a second substrate web, moving at a second speed. The apparatus includes a first station, wherein perforations are made in the first substrate web, and a second station, wherein the discrete element is separated from the first substrate web at a line of perforations and the discrete element is transferred to a positioned on the second substrate web. The first station includes a perforation cutter assembly and conveyer assembly. The perforation cutter assembly includes first and second rollers with a cutting blade, with a discontinuous edge, and an anvil surface, respectively, to make perforations in the first substrate web. The second station includes a separation and transfer mechanism having separation and transfer segments for separating and transferring the discrete element from the first substrate web to the second substrate web.
    Type: Grant
    Filed: September 3, 1999
    Date of Patent: February 25, 2003
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: James Dell Milner, Robert Herrick Collins, James Grant Lee, David Allen Palzewicz
  • Publication number: 20010042591
    Abstract: A method and apparatus are provided for separating a discrete element from a first substrate web, moving at a first speed, and placing the discrete element on a second substrate web, moving at a second speed. The apparatus includes a first station, wherein perforations are made in the first substrate web, and a second station, wherein the discrete element is separated from the first substrate web at a line of perforations and the discrete element is transferred to a positioned on the second substrate web. The first station includes a perforation cutter assembly and conveyer assembly. The perforation cutter assembly includes first and second rollers with a cutting blade, with a discontinuous edge, and an anvil surface, respectively, to make perforations in the first substrate web. The second station includes a separation and transfer mechanism having separation and transfer segments for separating and transferring the discrete element from the first substrate web to the second substrate web.
    Type: Application
    Filed: June 12, 2001
    Publication date: November 22, 2001
    Applicant: Kimberly-Clark Worldwide, Inc.
    Inventors: James Dell Milner, Robert Herrick Collins, James Grant Lee, David Allen Palzewicz