Patents by Inventor Robert Hoch

Robert Hoch has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9505619
    Abstract: Graphitic nanotubes, which include tubular fullerenes (commonly called “buckytubes”) and fibrils, which are functionalized by chemical substitution, are used as solid supports in electrogenerated chemiluminescence assays. The graphitic nanotubes are chemically modified with functional group biomolecules prior to use in an assay. Association of electrochemiluminescent ruthenium complexes with the functional group biomolecule-modified nanotubes permits detection of molecules including nucleic acids, antigens, enzymes, and enzyme substrates by multiple formats.
    Type: Grant
    Filed: March 20, 2006
    Date of Patent: November 29, 2016
    Assignee: MESO SCALE TECHNOLOGIES, LLC.
    Inventors: Richard J. Massey, Mark T. Martin, Liwen Dong, Ming Lu, Alan Fischer, Fabian Jameison, Pam Liang, Robert Hoch, Jonathan K. Leland
  • Patent number: 9409832
    Abstract: A catalytic process for dehydration of an aliphatic C2-C6 alcohol to its corresponding olefin is disclosed. The process continuously flows through a reaction zone a liquid phase containing an aliphatic C2-C6 alcohol to contact a non-volatile acid catalyst at a reaction temperature and pressure to at least partially convert the aliphatic C2-C6 alcohol in the liquid phase to its corresponding olefin. The reaction pressure is greater than atmospheric pressure and the reaction temperature is above the boiling point of the olefin at reaction pressure, but below the critical temperature of the alcohol, and the olefin product is substantially in the gaseous phase. After the contacting step, the olefin containing gaseous phase is separated from the liquid phase. The invention also relates to catalytic processes such as a hydrolysis of an olefin to an alcohol, an esterification, a transesterification, a polymerization, an aldol condensation or an ester hydrolysis.
    Type: Grant
    Filed: March 19, 2015
    Date of Patent: August 9, 2016
    Assignee: SIGNA CHEMISTRY, INC.
    Inventors: Michael Lefenfeld, Robert Hoch
  • Publication number: 20150307413
    Abstract: A catalytic process for dehydration of an aliphatic C2-C6 alcohol to its corresponding olefin is disclosed. The process continuously flows through a reaction zone a liquid phase containing an aliphatic C2-C6 alcohol to contact a non-volatile acid catalyst at a reaction temperature and pressure to at least partially convert the aliphatic C2-C6 alcohol in the liquid phase to its corresponding olefin. The reaction pressure is greater than atmospheric pressure and the reaction temperature is above the boiling point of the olefin at reaction pressure, but below the critical temperature of the alcohol, and the olefin product is substantially in the gaseous phase. After the contacting step, the olefin containing gaseous phase is separated from the liquid phase. The invention also relates to catalytic processes such as a hydrolysis of an olefin to an alcohol, an esterification, a transesterification, a polymerization, an aldol condensation or an ester hydrolysis.
    Type: Application
    Filed: March 19, 2015
    Publication date: October 29, 2015
    Applicant: SIGNA CHEMSTRY, INC.
    Inventors: Michael LEFENFELD, Robert HOCH
  • Patent number: 9126828
    Abstract: The invention relates to carbon nanotube structures containing both single walled and multi walled carbon nanotubes, and methods for preparing same. These carbon nanotube structures include but are not limited to macroscopic two and three dimensional structures of carbon nanotubes such as assemblages, mats, plugs, networks, rigid porous structures, extrudates, etc. The carbon nanotube structures of the present invention have a variety of uses, including but not limited to, porous media for filtration, adsorption, chromatography; electrodes and current collectors for supercapacitors, batteries and fuel cells; catalyst supports, (including electrocatalysis), etc.
    Type: Grant
    Filed: August 20, 2007
    Date of Patent: September 8, 2015
    Assignee: Hyperion Catalysis International, Inc.
    Inventors: Jun Ma, Alan Fiseher, Robert Hoch
  • Patent number: 9040741
    Abstract: A catalytic process for dehydration of an aliphatic C2-C6 alcohol to its corresponding olefin is disclosed. The process continuously flows through a reaction zone a liquid phase containing an aliphatic C2-C6 alcohol to contact a non-volatile acid catalyst at a reaction temperature and pressure to at least partially convert the aliphatic C2-C6 alcohol in the liquid phase to its corresponding olefin. The reaction pressure is greater than atmospheric pressure and the reaction temperature is above the boiling point of the olefin at reaction pressure, but below the critical temperature of the alcohol, and the olefin product is substantially in the gaseous phase. After the contacting step, the olefin containing gaseous phase is separated from the liquid phase. The invention also relates to catalytic processes such as a hydrolysis of an olefin to an alcohol, an esterification, a transesterification, a polymerization, an aldol condensation or an ester hydrolysis.
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: May 26, 2015
    Assignee: SIGNA CHEMISTRY, INC.
    Inventors: Michael Lefenfeld, Robert Hoch
  • Publication number: 20140316174
    Abstract: Methods are provided for the treatment of a feed stream containing C9 aromatic components to produce mesitylene-containing products. The methods include hydrodealkylating the feed stream to remove C2 and higher alkyl groups from the aromatic components and transalkylating the feed stream to rearrange the distribution of methyl groups among the aromatic components. Disclosed methods also include the treatment of a hydrocarbon feedstock by hydrodealkylation and/or transalkylation in order to produce a hydrocarbon product having an increased mass percentage of mesitylene.
    Type: Application
    Filed: April 18, 2014
    Publication date: October 23, 2014
    Inventors: Chris D'Acosta, Jeffery Miller, Robert Hoch
  • Patent number: 8852547
    Abstract: A new method for recovering a catalytic metal and carbon nanotubes from a supported catalyst is provided. The carbon nanotube, including carbon nanotube structures, may serve as the support for the catalytic metal. The valence state of the catalytic metal, if not already in the positive state, is raised to a positive state by contacting the supported catalyst with a mild oxidizing agent under conditions which does not destroy the carbon nanotube. The supported catalyst is simultaneously or subsequently contacted with an acid solution to dissolve the catalytic metal without dissolving the carbon nanotube.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: October 7, 2014
    Assignee: Hyperion Catalysis International, Inc.
    Inventors: Jun Ma, Robert Hoch
  • Patent number: 8839885
    Abstract: A drill rod is disclosed. The drill rod includes a casing assembly defining a length that extends axially between a first end and an opposite second end of the drill rod, and a drive shaft rotatably mounted within the casing assembly. The drive shaft extends axially along the drill rod generally from the first end of the casing assembly to the second end of the casing assembly. The drill rod also includes latching pins at the first end of the drill rod and latching pin receivers at the second end of the drill rod. The drill rod further includes latches provided adjacent the latching pin receivers. The latches are movable between latching and non-latching positions. The latches move along an orientation of movement then the latches between the latching and non-latching positions. The drill rod may also include biasing structures that apply retention forces to the latches for retaining the latches in the non-latching position.
    Type: Grant
    Filed: April 6, 2011
    Date of Patent: September 23, 2014
    Assignee: Vermeer Manufacturing Company
    Inventors: Robert Hoch Shuman, V, Douglas Eugene See, Jr., Stuart Harrison, Jeffrey James Utter, Matthew Arlen Mills
  • Publication number: 20140162040
    Abstract: Provided are oxidized carbon nanotube structures including aggregates, networks, assemblages, rigid porous structures, electrodes, and mats. Oxidized carbon nanotubes may be formed by conducting gas-phase oxidation on carbon nanotubes. Gas-phase oxidation may be conducted by contacting carbon nanotubes with gas-phase oxidizing agents, such as CO2, O2, steam, N2O, NO, NO2, O3, ClO2, and mixtures thereof. Near critical and supercritical water can also be used as oxidizing agents. Oxidized carbon nanotube structures may include a plurality of oxidized carbon nanotubes along with a supported catalyst, which was used to grow carbon nanotubes prior to oxidation. The supported catalyst may be subjected to gas-phase oxidation and may remain with the oxidized carbon nanotubes in oxidized carbon nanotube structures.
    Type: Application
    Filed: November 8, 2013
    Publication date: June 12, 2014
    Applicant: Hyperion Catalysis International, Inc.
    Inventors: Chunming NIU, David MOY, Asif CHISHTI, Robert HOCH
  • Patent number: 8684470
    Abstract: The present disclosure relates to a tunneling apparatus including a drill head having a main body and a drive stem rotatably mounted within the main body. The main body defines a vacuum passage offset from the drive stem that extends through the main body from a proximal end to a distal end of the main body. The tunneling apparatus also includes an axial bearing structure for transferring axial load between the drive stem and the main body of the drill head. The axial bearing structure is proximally offset from the distal end of the main body of the drill head. The tunneling apparatus further includes a first radial bearing structure for transferring radial load between the drive stem and the main body of the drill head. The first radial bearing structure is positioned between the axial bearing structure and the distal end of the main body of the drill head and is distally offset from the axial bearing structure.
    Type: Grant
    Filed: February 11, 2010
    Date of Patent: April 1, 2014
    Assignee: Vermeer Manufacturing Company
    Inventors: Stuart Harrison, Andis Normunds Salins, Matthew Arlen Mills, Matthew Stephen Vos, Tod Jason Michael, Robert Hoch Shuman, V
  • Patent number: 8580436
    Abstract: Methods of oxidizing multiwalled carbon nanotubes are provided. The multiwalled carbon nanotubes are oxidized by contacting the carbon nanotubes with gas-phase oxidizing agents such as CO2, O2, steam, N2O, NO, NO2, O3, and ClO2. Near critical and supercritical water can also be used as oxidizing agents. The multiwalled carbon nanotubes oxidized according to methods of the invention can be used to prepare rigid porous structures which can be utilized to form electrodes for fabrication of improved electrochemical capacitors.
    Type: Grant
    Filed: August 20, 2007
    Date of Patent: November 12, 2013
    Assignee: Hyperion Catalysis International, Inc.
    Inventors: Chunming Niu, David Moy, Asif Chishti, Robert Hoch
  • Publication number: 20130008718
    Abstract: A tunneling apparatus is disclosed. The tunneling apparatus includes a drill string formed by a plurality of drill string sections. The drill string has a proximal end and a distal end. The tunneling apparatus also includes a drill head mounted at the distal end of the drill string, the drill head including a cutting unit, a rotational driver that provides torque for rotating the cutting unit, and a thrust driver for applying thrust to the drill string. The tunneling apparatus further includes a vacuum system for withdrawing spoils generated by the cutting unit during operation of the tunneling apparatus and a drilling fluid system for providing drilling fluid to adjacent the cutting unit during operation of the tunneling apparatus. The tunneling apparatus includes a control system that allows an operator to select between a drilling mode and a break-out mode.
    Type: Application
    Filed: March 26, 2010
    Publication date: January 10, 2013
    Applicant: Vermeer Manufacturing Company
    Inventors: Melvin Nguyen, John Wesley Philbrook, Andis Salins, Stuart Harrison, Louis C. Hartke, Matthew Stephen Vos, Robert Hoch Shuman, V, Hans Kelpe, Douglas Eugene See, JR., Jeffrey Scieszinski
  • Patent number: 8287836
    Abstract: Methods of preparing single walled carbon nanotubes are provided. Carbon containing gas is contacted with a supported metal catalyst under reaction conditions to yield at least 90% single walled carbon nanotubes and at least 1 gram single walled carbon nanotubes/gram metal catalyst. The support material may be calcined at temperatures between 150 and 600° C., and may have at least one oxidized planar surface. Reaction conditions include less than 10 atmospheres pressure and less than 800° C.
    Type: Grant
    Filed: August 20, 2007
    Date of Patent: October 16, 2012
    Assignee: Hyperion Catalysis International, Inc.
    Inventors: Xinjie Zhang, Jun Ma, Howard Tennent, Robert Hoch
  • Publication number: 20120220796
    Abstract: A catalytic process for dehydration of an aliphatic C2-C6 alcohol to its corresponding olefin is disclosed. The process continuously flows through a reaction zone a liquid phase containing an aliphatic C2-C6 alcohol to contact a non-volatile acid catalyst at a reaction temperature and pressure to at least partially convert the aliphatic C2-C6 alcohol in the liquid phase to its corresponding olefin. The reaction pressure is greater than atmospheric pressure and the reaction temperature is above the boiling point of the olefin at reaction pressure, but below the critical temperature of the alcohol, and the olefin product is substantially in the gaseous phase. After the contacting step, the olefin containing gaseous phase is separated from the liquid phase. The invention also relates to catalytic processes such as a hydrolysis of an olefin to an alcohol, an esterification, a transesterification, a polymerization, an aldol condensation or an ester hydrolysis.
    Type: Application
    Filed: July 29, 2010
    Publication date: August 30, 2012
    Inventors: Michael Lefenfeld, Robert Hoch
  • Patent number: 8118216
    Abstract: A method (and system) of discovering a significant subset in a collection of documents, includes identifying a set of documents from a plurality of documents based on a likelihood that documents in the set of documents carries an instance of information that is characteristic to the documents in the set of documents.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: February 21, 2012
    Assignees: JP Morgan Chase Bank, International Business Machines Corporation
    Inventors: Robert Hoch, Tayo Ibikunle, Ehud Kamin, William A. Liberis, Tomasz J. Nowicki, Michael J. Reilly, Howard E. Sachar, Charles P. Tresser, Eugene Walach
  • Publication number: 20110312490
    Abstract: A new method for preparing a supported catalyst is herein provided. A carbon nanotube structure such as a rigid porous structure is formed from carbon nanotubes. A metal catalyst is then loaded or deposited onto the carbon nanotube structure. The loaded carbon nanotube is preferably ground to powder form.
    Type: Application
    Filed: August 3, 2011
    Publication date: December 22, 2011
    Inventors: Jun Ma, David Moy, Howard Tennent, Robert Hoch, Alan Fischer
  • Publication number: 20110266062
    Abstract: A drill rod is disclosed. The drill rod includes a casing assembly defining a length that extends axially between a first end and an opposite second end of the drill rod, and a drive shaft rotatably mounted within the casing assembly. The drive shaft extends axially along the drill rod generally from the first end of the casing assembly to the second end of the casing assembly. The drill rod also includes latching pins at the first end of the drill rod and latching pin receivers at the second end of the drill rod. The drill rod further includes latches provided adjacent the latching pin receivers. The latches are movable between latching and non-latching positions. The latches move along an orientation of movement then the latches between the latching and non-latching positions. The drill rod may also include biasing structures that apply retention forces to the latches for retaining the latches in the non-latching position.
    Type: Application
    Filed: April 6, 2011
    Publication date: November 3, 2011
    Inventors: Robert Hoch Shuman, V, Douglas Eugene See, JR., Stuart Ronald Harrison, Jeffrey James Utter, Matthew Arlen Mills
  • Patent number: 7998369
    Abstract: An electrically conductive composite comprising a polyvinylidene fluoride polymer or copolymer and carbon nanotubes is provided. Preferably, carbon nanotubes may be present in the range of about 0.5-20% by weight of the composite. The composites are prepared by dissolving the polymer in a first solvent to form a polymer solution and then adding the carbon nanotubes into the solution. The solution is mixed using an energy source such as a sonicator or a Waring blender. A precipitating component is added to precipitate out a composite comprising the polymer and the nanotubes. The composite is isolated by filtering the solution and drying the composite.
    Type: Grant
    Filed: August 20, 2007
    Date of Patent: August 16, 2011
    Assignee: Hyperion Catalysis International, Inc.
    Inventors: Chunming Niu, Lein Ngaw, Alan B. Fischer, Robert Hoch
  • Patent number: 7960904
    Abstract: The present invention relates to a field emission device comprising an anode and a cathode, wherein said cathode includes carbon nanotubes nanotubes which have been subjected to energy, plasma, chemical, or mechanical treatment. The present invention also relates to a field emission cathode comprising carbon nanotubes which have been subject to such treatment. A method for treating the carbon nanotubes and for creating a field emission cathode is also disclosed. A field emission display device containing carbon nanotube which have been subject to such treatment is further disclosed.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: June 14, 2011
    Assignee: Hyperion Catalysis International, Inc.
    Inventors: Mikio Takai, Alan B. Fischer, Chunming Niu, Howard G. Tennent, Robert Hoch, Hans Biebuyck
  • Patent number: 7923403
    Abstract: A new method for preparing a supported catalyst is herein provided. The supported catalyst comprises a carbon nanotube network structure containing metal catalysts. The metal catalyst may be loaded onto functionalized carbon nanotubes before forming the carbon nanotube network structure. Alternatively, the metal catalyst may be loaded onto the carbon nanotube network structures themselves.
    Type: Grant
    Filed: August 20, 2007
    Date of Patent: April 12, 2011
    Assignee: Hyperion Catalysis International, Inc.
    Inventors: Jun Ma, David Moy, Alan Fischer, Robert Hoch