Patents by Inventor Robert Hunt

Robert Hunt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210315524
    Abstract: The invention provides a neck-worn sensor that is a single, body-worn system that measures the following parameters from an ambulatory patient: heart rate, pulse rate, pulse oximetry, respiratory rate, temperature, thoracic fluid levels, stroke volume, cardiac output, and a parameter sensitive to blood pressure called pulse transit time. From stroke volume, a first algorithm employing a linear model can estimate the patient's pulse pressure. And from pulse pressure and pulse transit time, a second algorithm, also employing a linear algorithm, can estimate systolic blood pressure and diastolic blood pressure. Thus, the sensor can measure all five vital signs along with hemodynamic parameters. It also includes a motion-detecting accelerometer, from which it can determine motion-related parameters such as posture, degree of motion, activity level, respiratory-induced heaving of the chest, and falls.
    Type: Application
    Filed: April 30, 2021
    Publication date: October 14, 2021
    Inventors: Matthew BANET, Kenneth Robert HUNT, Marshal Singh DHILLON, Susan Meeks PEDE
  • Patent number: 11141072
    Abstract: The invention provides a neck-worn sensor (referred to herein as the ‘necklace’) that is a single, body-worn system that measures the following parameters from an ambulatory patient: heart rate, pulse rate, pulse oximetry, respiratory rate, temperature, thoracic fluid levels, stroke volume, cardiac output, and a parameter sensitive to blood pressure called pulse transit time. From stroke volume, a first algorithm employing a linear model can estimate the patient's pulse pressure. And from pulse pressure and pulse transit time, a second algorithm, also employing a linear algorithm, can estimate systolic blood pressure and diastolic blood pressure. Thus, the necklace can measure all five vital signs along with hemodynamic parameters. It also includes a motion-detecting accelerometer, from which it can determine motion-related parameters such as posture, degree of motion, activity level, respiratory-induced heaving of the chest, and falls.
    Type: Grant
    Filed: June 10, 2019
    Date of Patent: October 12, 2021
    Assignees: BAXTER INTERNATIONAL INC., BAXTER HEALTHCARE SA
    Inventors: Matthew Banet, Susan Meeks Pede, Marshal Singh Dhillon, Andrew Terry, Kenneth Robert Hunt
  • Patent number: 11129537
    Abstract: The invention provides a sensor for measuring both impedance and ECG waveforms that is configured to be worn around a patient's neck. The sensor features 1) an ECG system that includes an analog ECG circuit, in electrical contact with at least two ECG electrodes, that generates an analog ECG waveform; and 2) an impedance system that includes an analog impedance circuit, in electrical contact with at least two (and typically four) impedance electrodes, that generates an analog impedance waveform. Also included in the neck-worn system are a digital processing system featuring a microprocessor, and an analog-to-digital converter. During a measurement, the digital processing system receives and processes the analog ECG and impedance waveforms to measure physiological information from the patient. Finally, a cable that drapes around the patient's neck connects the ECG system, impedance system, and digital processing system.
    Type: Grant
    Filed: September 30, 2019
    Date of Patent: September 28, 2021
    Assignees: BAXTER INTERNATIONAL INC., BAXTER HEALTHCARE SA
    Inventors: Matthew Banet, Susan Meeks Pede, Marshal Singh Dhillon, Kenneth Robert Hunt
  • Patent number: 11123020
    Abstract: The invention provides a neck-worn sensor that is a single, body-worn system that measures the following parameters from an ambulatory patient: heart rate, pulse rate, pulse oximetry, respiratory rate, temperature, thoracic fluid levels, stroke volume, cardiac output, and a parameter sensitive to blood pressure called pulse transit time. From stroke volume, a first algorithm employing a linear model can estimate the patient's pulse pressure. And from pulse pressure and pulse transit time, a second algorithm, also employing a linear algorithm, can estimate systolic blood pressure and diastolic blood pressure. Thus, the sensor can measure all five vital signs along with hemodynamic parameters. It also includes a motion-detecting accelerometer, from which it can determine motion-related parameters such as posture, degree of motion, activity level, respiratory-induced heaving of the chest, and falls.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: September 21, 2021
    Assignees: BAXTER INTERNATIONAL INC., BAXTER HEALTHCARE SA
    Inventors: Matthew Banet, Marshal Singh Dhillon, Susan Meeks Pede, Kenneth Robert Hunt
  • Patent number: 10993663
    Abstract: The invention provides a neck-worn sensor that is a single, body-worn system that measures the following parameters from an ambulatory patient: heart rate, pulse rate, pulse oximetry, respiratory rate, temperature, thoracic fluid levels, stroke volume, cardiac output, and a parameter sensitive to blood pressure called pulse transit time. From stroke volume, a first algorithm employing a linear model can estimate the patient's pulse pressure. And from pulse pressure and pulse transit time, a second algorithm, also employing a linear algorithm, can estimate systolic blood pressure and diastolic blood pressure. Thus, the sensor can measure all five vital signs along with hemodynamic parameters. It also includes a motion-detecting accelerometer, from which it can determine motion-related parameters such as posture, degree of motion, activity level, respiratory-induced heaving of the chest, and falls.
    Type: Grant
    Filed: March 26, 2018
    Date of Patent: May 4, 2021
    Assignees: BAXTER INTERNATIONAL INC., BAXTER HEALTHCARE SA
    Inventors: Matthew Banet, Kenneth Robert Hunt, Marshal Singh Dhillon, Susan Meeks Pede
  • Publication number: 20200397374
    Abstract: The invention provides a sensor for measuring both impedance and ECG waveforms that is configured to be worn around a patient's neck. The sensor features 1) an ECG system that includes an analog ECG circuit, in electrical contact with at least two ECG electrodes, that generates an analog ECG waveform; and 2) an impedance system that includes an analog impedance circuit, in electrical contact with at least two (and typically four) impedance electrodes, that generates an analog impedance waveform. Also included in the neck-worn system are a digital processing system featuring a microprocessor, and an analog-to-digital converter. During a measurement, the digital processing system receives and processes the analog ECG and impedance waveforms to measure physiological information from the patient. Finally, a cable that drapes around the patient's neck connects the ECG system, impedance system, and digital processing system.
    Type: Application
    Filed: July 28, 2020
    Publication date: December 24, 2020
    Inventors: Matthew Banet, Susan Meeks Pede, Marshal Singh Dhillon, Kenneth Robert Hunt
  • Patent number: 10869773
    Abstract: A prosthetic finger includes a main body and a terminal gripper at an end of the main body for enabling fine-motor grasping skills. The terminal gripper has at least two tongs movable relative to one another. The prosthetic finger includes a gripping mode and a flexion mode. In the gripping mode, the tongs of the terminal gripper are able to move relative to one another while the main body is not able to flex, and in the flexion mode, the main body is able to flex while the at two tongs is not able to move relative to one another.
    Type: Grant
    Filed: October 10, 2018
    Date of Patent: December 22, 2020
    Assignee: College Park Industries, Inc.
    Inventors: Carlos Humberto Martinez-Luna, Michael Alfred Delph, II, Taylor Raven Duckworth, Todd Richard Farrell, Thane Robert Hunt, Craig Malone Kelly, Kevin Edward Keough, Carlton Winslow King, Benjamin Douglas Pulver, Todd William Roberts, Benjamin Edward McDonald
  • Publication number: 20200375202
    Abstract: A brine for injecting into whole poultry is composed of substrate poultry meat which has been emulsified. The substrate poultry meat may consist of white meat, dark meat, or a combination of white meat and dark meat in proportion to their natural occurrence in the poultry. The poultry substrate for the brine may also include fat and skin from the poultry, optionally in proportion to their presence in the poultry. The emulsified brine composed of poultry substrate components is injected into whole poultry birds utilizing unique injection needles wherein the inlet side ports of the hollow needles are beveled or flared or curved or rounded. Such beveling or flaring or rounding or curving extends outwardly in the direction of the inlet port extending outwardly from the hollow interior of the needle.
    Type: Application
    Filed: May 29, 2020
    Publication date: December 3, 2020
    Applicant: John Bean Technologies Corporation
    Inventor: Dale Robert Hunt
  • Patent number: 10806351
    Abstract: The invention provides a body-worn monitor featuring a processing system that receives a digital data stream from an ECG system. A cable houses the ECG system at one terminal end, and plugs into the processing system, which is worn on the patient's wrist like a conventional wristwatch. The ECG system features: i) a connecting portion connected to multiple electrodes worn by the patient; ii) a differential amplifier that receives electrical signals from each electrode and process them to generate an analog ECG waveform; iii) an analog-to-digital converter that converts the analog ECG waveform into a digital ECG waveform; and iv) a transceiver that transmits a digital data stream representing the digital ECG waveform (or information calculated from the waveform) through the cable and to the processing system. Different ECG systems, typically featuring three, five, or twelve electrodes, can be interchanged with one another.
    Type: Grant
    Filed: September 15, 2009
    Date of Patent: October 20, 2020
    Assignee: SOTERA WIRELESS, INC.
    Inventors: Jim Moon, Henk Visser, Robert Hunt
  • Patent number: 10786032
    Abstract: A skydiving helmet including a helmet shell having a front opening, is provided. The helmet further includes a visor having a lateral mounting section, where the visor is operable between a lowered position and a raised position. The skydiving helmet also includes a visor mounting system laterally positioned on the helmet shell to pivotally connect the lateral mounting section to the helmet shell. The visor mounting system includes a base plate having a cavity formed therein with a locking slot and a guiding section communicating with one another. The visor mounting system also includes a locking element positioned within the cavity and being operable between an extended configuration for preventing rotation of the visor, and a retracted configuration for allowing a frontward translation of the visor, away from the helmet front opening, and subsequent rotation of the visor, from the lowered to the raised position.
    Type: Grant
    Filed: January 18, 2019
    Date of Patent: September 29, 2020
    Assignee: Cookie Composites Group PTY LTD.
    Inventors: Jeremy Robert Hunt, Jason Cooke
  • Patent number: 10729375
    Abstract: The invention provides a sensor for measuring both impedance and ECG waveforms that is configured to be worn around a patient's neck. The sensor features 1) an ECG system that includes an analog ECG circuit, in electrical contact with at least two ECG electrodes, that generates an analog ECG waveform; and 2) an impedance system that includes an analog impedance circuit, in electrical contact with at least two (and typically four) impedance electrodes, that generates an analog impedance waveform. Also included in the neck-worn system are a digital processing system featuring a microprocessor, and an analog-to-digital converter. During a measurement, the digital processing system receives and processes the analog ECG and impedance waveforms to measure physiological information from the patient. Finally, a cable that drapes around the patient's neck connects the ECG system, impedance system, and digital processing system.
    Type: Grant
    Filed: March 12, 2018
    Date of Patent: August 4, 2020
    Assignees: BAXTER INTERNATIONAL INC., BAXTER HEALTHCARE SA
    Inventors: Matthew Banet, Susan Meeks Pede, Marshal Singh Dhillon, Kenneth Robert Hunt
  • Publication number: 20200229529
    Abstract: A skydiving helmet including a helmet shell having a front opening, is provided. The helmet further includes a visor having a lateral mounting section, where the visor is operable between a lowered position and a raised position. The skydiving helmet also includes a visor mounting system laterally positioned on the helmet shell to pivotally connect the lateral mounting section to the helmet shell. The visor mounting system includes a base plate having a cavity formed therein with a locking slot and a guiding section communicating with one another. The visor mounting system also includes a locking element positioned within the cavity and being operable between an extended configuration for preventing rotation of the visor, and a retracted configuration for allowing a frontward translation of the visor, away from the helmet front opening, and subsequent rotation of the visor, from the lowered to the raised position.
    Type: Application
    Filed: January 18, 2019
    Publication date: July 23, 2020
    Applicant: Cookie Composites Group Pty Ltd.
    Inventors: Jeremy Robert Hunt, Jason Cooke
  • Patent number: 10632626
    Abstract: The present disclosure provides a biologically-inspired robotic device comprising: a first member; a second member pivotably connected to the first member; one or more actuators; and a coupler/decoupler mechanism (CDC) selectively coupling or decoupling of the one or more actuators to the second member, such that, when the one or more actuators are coupled to the second member, the one or more actuators act to pivot the second member relative to the first member.
    Type: Grant
    Filed: June 7, 2017
    Date of Patent: April 28, 2020
    Assignee: Worcester Polytechnic Institute
    Inventors: Marko B. Popovic, Matthew Paul Bowers, Thane Robert Hunt, Lynn Robert Koesterman, Michael Pickett, Richard Matthew Rafferty, Saivimal Sridar, Seiichiro Ueda, Varun Visnudas Verlencar, Amaid Zia, Ananth Jonnavittula
  • Publication number: 20200037892
    Abstract: The invention provides a sensor for measuring both impedance and ECG waveforms that is configured to be worn around a patient's neck. The sensor features 1) an ECG system that includes an analog ECG circuit, in electrical contact with at least two ECG electrodes, that generates an analog ECG waveform; and 2) an impedance system that includes an analog impedance circuit, in electrical contact with at least two (and typically four) impedance electrodes, that generates an analog impedance waveform. Also included in the neck-worn system are a digital processing system featuring a microprocessor, and an analog-to-digital converter. During a measurement, the digital processing system receives and processes the analog ECG and impedance waveforms to measure physiological information from the patient. Finally, a cable that drapes around the patient's neck connects the ECG system, impedance system, and digital processing system.
    Type: Application
    Filed: August 12, 2019
    Publication date: February 6, 2020
    Applicant: TOSENSE, INC.
    Inventors: Matthew BANET, Susan Meeks PEDE, Marshal Singh DHILLON, Kenneth Robert HUNT
  • Publication number: 20200029829
    Abstract: The invention provides a sensor for measuring both impedance and ECG waveforms that is configured to be worn around a patient's neck. The sensor features 1) an ECG system that includes an analog ECG circuit, in electrical contact with at least two ECG electrodes, that generates an analog ECG waveform; and 2) an impedance system that includes an analog impedance circuit, in electrical contact with at least two (and typically four) impedance electrodes, that generates an analog impedance waveform. Also included in the neck-worn system are a digital processing system featuring a microprocessor, and an analog-to-digital converter. During a measurement, the digital processing system receives and processes the analog ECG and impedance waveforms to measure physiological information from the patient. Finally, a cable that drapes around the patient's neck connects the ECG system, impedance system, and digital processing system.
    Type: Application
    Filed: September 30, 2019
    Publication date: January 30, 2020
    Applicant: TOSENSE, INC.
    Inventors: Matthew BANET, Susan Meeks PEDE, Marshal Singh DHILLON, Kenneth Robert HUNT
  • Publication number: 20200022589
    Abstract: The invention provides a sensor for measuring both impedance and ECG waveforms that is configured to be worn around a patient's neck. The sensor features 1) an ECG system that includes an analog ECG circuit, in electrical contact with at least two ECG electrodes, that generates an analog ECG waveform; and 2) an impedance system that includes an analog impedance circuit, in electrical contact with at least two (and typically four) impedance electrodes, that generates an analog impedance waveform. Also included in the neck-worn system are a digital processing system featuring a microprocessor, and an analog-to-digital converter. During a measurement, the digital processing system receives and processes the analog ECG and impedance waveforms to measure physiological information from the patient. Finally, a cable that drapes around the patient's neck connects the ECG system, impedance system, and digital processing system.
    Type: Application
    Filed: September 30, 2019
    Publication date: January 23, 2020
    Applicant: TOSENSE, INC.
    Inventors: Matthew BANET, Susan Meeks PEDE, Marshal Singh DHILLON, Kenneth Robert HUNT
  • Publication number: 20190307358
    Abstract: The invention provides a sensor for measuring both impedance and ECG waveforms that is configured to be worn around a patient's neck. The sensor features 1) an ECG system that includes an analog ECG circuit, in electrical contact with at least two ECG electrodes, that generates an analog ECG waveform; and 2) an impedance system that includes an analog impedance circuit, in electrical contact with at least two (and typically four) impedance electrodes, that generates an analog impedance waveform. Also included in the neck-worn system are a digital processing system featuring a microprocessor, and an analog-to-digital converter. During a measurement, the digital processing system receives and processes the analog ECG and impedance waveforms to measure physiological information from the patient. Finally, a cable that drapes around the patient's neck connects the ECG system, impedance system, and digital processing system.
    Type: Application
    Filed: June 10, 2019
    Publication date: October 10, 2019
    Applicant: TOSENSE, INC.
    Inventors: Matthew Banet, Susan Meeks Pede, Marshal Singh Dhillon, Kenneth Robert Hunt
  • Patent number: 10426357
    Abstract: The invention provides a sensor for measuring both impedance and ECG waveforms that is configured to be worn around a patient's neck. The sensor features 1) an ECG system that includes an analog ECG circuit, in electrical contact with at least two ECG electrodes, that generates an analog ECG waveform; and 2) an impedance system that includes an analog impedance circuit, in electrical contact with at least two (and typically four) impedance electrodes, that generates an analog impedance waveform. Also included in the neck-worn system are a digital processing system featuring a microprocessor, and an analog-to-digital converter. During a measurement, the digital processing system receives and processes the analog ECG and impedance waveforms to measure physiological information from the patient. Finally, a cable that drapes around the patient's neck connects the ECG system, impedance system, and digital processing system.
    Type: Grant
    Filed: November 6, 2017
    Date of Patent: October 1, 2019
    Assignee: TOSENSE, INC.
    Inventors: Matthew Banet, Susan Meeks Pede, Marshal Singh Dhillon, Kenneth Robert Hunt
  • Publication number: 20190290134
    Abstract: The invention provides a neck-worn sensor (referred to herein as the ‘necklace’) that is a single, body-worn system that measures the following parameters from an ambulatory patient: heart rate, pulse rate, pulse oximetry, respiratory rate, temperature, thoracic fluid levels, stroke volume, cardiac output, and a parameter sensitive to blood pressure called pulse transit time. From stroke volume, a first algorithm employing a linear model can estimate the patient's pulse pressure. And from pulse pressure and pulse transit time, a second algorithm, also employing a linear algorithm, can estimate systolic blood pressure and diastolic blood pressure. Thus, the necklace can measure all five vital signs along with hemodynamic parameters. It also includes a motion-detecting accelerometer, from which it can determine motion-related parameters such as posture, degree of motion, activity level, respiratory-induced heaving of the chest, and falls.
    Type: Application
    Filed: June 10, 2019
    Publication date: September 26, 2019
    Applicant: TOSENSE, INC.
    Inventors: Matthew Banet, Susan Meeks Pede, Marshal Singh Dhillon, Andrew Terry, Kenneth Robert Hunt
  • Patent number: 10420476
    Abstract: The invention provides a body-worn monitor featuring a processing system that receives a digital data stream from an ECG system. A cable houses the ECG system at one terminal end, and plugs into the processing system, which is worn on the patient's wrist like a conventional wristwatch. The ECG system features: i) a connecting portion connected to multiple electrodes worn by the patient; ii) a differential amplifier that receives electrical signals from each electrode and process them to generate an analog ECG waveform; iii) an analog-to-digital converter that converts the analog ECG waveform into a digital ECG waveform; and iv) a transceiver that transmits a digital data stream representing the digital ECG waveform (or information calculated from the waveform) through the cable and to the processing system. Different ECG systems, typically featuring three, five, or twelve electrodes, can be interchanged with one another.
    Type: Grant
    Filed: September 15, 2009
    Date of Patent: September 24, 2019
    Assignee: SOTERA WIRELESS, INC.
    Inventors: Jim Moon, Henk Visser, Robert Hunt