Patents by Inventor Robert I. Mink

Robert I. Mink has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6995109
    Abstract: Methods of preparing bimetallic catalysts are disclosed. The methods include the steps of providing a supported non-metallocene catalyst, contacting a slurry of the supported non-metallocene catalyst in a non-polar hydrocarbon with a solution of a metallocene compound and an alumoxane, and drying the contact product to obtain a supported bimetallic catalyst. The supported non-metallocene catalyst is prepared by dehydrating a particulate support material at a temperature of greater than 600° C., preparing a slurry of the dehydrated support in a non-polar hydrocarbon, contacting the slurry with an organomagnesium compound and an alcohol, contacting the resulting slurry with a non-metallocene compound of a Group 4 or Group 5 transition metal, and drying the contact product to obtain a supported non-metallocene catalyst as a free-flowing powder. The bimetallic catalysts show increased activity relative to catalysts prepared using support materials dehydrated at lower temperatures.
    Type: Grant
    Filed: October 3, 2002
    Date of Patent: February 7, 2006
    Assignee: Univation Technologies, LLC
    Inventors: Robert I. Mink, Thomas E. Nowlin, Kenneth G. Schurzky, Pradeep P. Shirodkar, Robert L. Santana
  • Patent number: 6855654
    Abstract: The invention relates to a process for uniformly dispersing a transition metal metallocene complex on a carrier comprising (1) providing silica which is porous and has a particle size of 1 to 250 microns, having pores which have an average diameter of 50 to 500 Angstroms and having a pore volume of 0.5 to 5.0 cc/g; (2) slurrying the silica in an aliphatic solvent having a boiling point less than 110° C.
    Type: Grant
    Filed: September 16, 2002
    Date of Patent: February 15, 2005
    Assignee: ExxonMobil Oil Corporation
    Inventors: Yury V. Kissin, Robert I. Mink, Thomas E. Nowlin, Pradeep P. Shirodkar, Sandra D. Schregenberger, Grace O. Tsien
  • Publication number: 20040242808
    Abstract: A method is disclosed for preparing broad or bimodal molecular weight distribution polyolefins having a targeted property, such as, flow index, melt flow ratio, or weight fractions of higher or lower molecular weight components. The method uses a bimetallic catalyst containing a metallocene component and a non-metallocene component, and the activities of the metallocene and non-metallocene portions are controlled by adjusting the ratio of organoaluminum and modified methylaluminoxane cocatalyst. The method allows for monitoring and adjustment of polyolefin properties on a real-time basis, as the polyolefin is forming.
    Type: Application
    Filed: March 11, 2004
    Publication date: December 2, 2004
    Inventors: Robert I Mink, Thomas E. Nowlin, Kenneth G. Schurzky, Keith dackson, Sandra D Schregenberger, Pradeep P Shirodkar
  • Publication number: 20040198588
    Abstract: Methods of preparing bimetallic catalysts are disclosed. The methods include the steps of providing a supported non-metallocene catalyst, contacting a slurry of the supported non-metallocene catalyst in a non-polar hydrocarbon with a solution of a metallocene compound and an alumoxane, and drying the contact product to obtain a supported bimetallic catalyst. The supported non-metallocene catalyst is prepared by dehydrating a particulate support material at a temperature of greater than 600° C., preparing a slurry of the dehydrated support in a non-polar hydrocarbon, contacting the slurry with an organomagnesium compound and an alcohol, contacting the resulting slurry with a non-metallocene compound of a Group 4 or Group 5 transition metal, and drying the contact product to obtain a supported non-metallocene catalyst as a free-flowing powder. The bimetallic catalysts show increased activity relative to catalysts prepared using support materials dehydrated at lower temperatures.
    Type: Application
    Filed: April 13, 2004
    Publication date: October 7, 2004
    Inventors: Robert I. Mink, Thomas E. Nowlin, Kenneth G. Schurzky, Pradeep P. Shirodkar, Robert L. Santana
  • Patent number: 6740617
    Abstract: A process of forming a bimetallic catalyst composition comprising a cocatalyst (a trialkylaluminum compound) and a catalyst precursor. The precursor comprises at least two transition metals; a metallocene complex is a source of one of said two transition metals. The precursor is produced in a single-pot process by contacting a porous carrier, in sequence, with a dialkylmagnesium compound, an aliphatic alcohol, a non-metallocene transition metal compound, a contact product of a metallocene complex and a trialkyl-aluminum compound, and methylalumoxane.
    Type: Grant
    Filed: June 3, 2002
    Date of Patent: May 25, 2004
    Assignee: Univation Technologies, LLC
    Inventors: Robert I. Mink, Yury V. Kissin, Thomas E. Nowlin, Pradeep P. Shirodkar, Grace O. Tsien, Sandra D. Schregenberger
  • Patent number: 6713425
    Abstract: A process of forming a bimetallic catalyst composition comprising a cocatalyst (a trialkylaluminum compound) and a catalyst precursor. The precursor comprises at least two transition metals; a metallocene complex is a source of one of said two transition metals. The precursor is produced in a single-pot process by contacting a porous carrier, in sequence, with a dialkylmagnesium compound, an aliphatic alcohol, a non-metallocene transition metal compound, a contact product of a metallocene complex and a trialkyl-aluminum compound, and methylalumoxane.
    Type: Grant
    Filed: June 3, 2002
    Date of Patent: March 30, 2004
    Assignee: Univation Technologies, LLC
    Inventors: Robert I. Mink, Yury V. Kissin, Thomas E. Nowlin, Pradeep P. Shirodkar, Grace O. Tsien, Sandra D. Schregenberger
  • Publication number: 20030054946
    Abstract: A process of forming a bimetallic catalyst composition comprising a cocatalyst (a trialkylaluminum compound) and a catalyst precursor. The precursor comprises at least two transition metals; a metallocene complex is a source of one of said two transition metals. The precursor is produced in a single-pot process by contacting a porous carrier, in sequence, with a dialkylmagnesium compound, an aliphatic alcohol, a non-metallocene transition metal compound, a contact product of a metallocene complex and a trialkyl-aluminum compound, and methylalumoxane.
    Type: Application
    Filed: June 3, 2002
    Publication date: March 20, 2003
    Inventors: Robert I. Mink, Yury V. Kissin, Thomas E. Nowlin, Pradeep P. Shirodkar, Grace O. Tsien, Sandra D. Schregenberger
  • Publication number: 20030032550
    Abstract: A process of forming a bimetallic catalyst composition comprising a cocatalyst (a trialkylaluminum compound) and a catalyst precursor. The precursor comprises at least two transition metals; a metallocene complex is a source of one of said two transition metals. The precursor is produced in a single-pot process by contacting a porous carrier, in sequence, with a dialkylmagnesium compound, an aliphatic alcohol, a non-metallocene transition metal compound, a contact product of a metallocene complex and a trialkyl-aluminum compound, and methylalumoxane.
    Type: Application
    Filed: June 3, 2002
    Publication date: February 13, 2003
    Inventors: Robert I. Mink, Yury V. Kissin, Thomas E. Nowlin, Pradeep P. Shirodkar, Grace O. Tsien, Sandra D. Schregenberger
  • Publication number: 20030017938
    Abstract: The invention relates to a process for uniformly dispersing a transition metal metallocene complex on a carrier comprising
    Type: Application
    Filed: September 16, 2002
    Publication date: January 23, 2003
    Inventors: Yury V. Kissin, Robert I. Mink, Thomas E. Nowlin, Pradeep P. Shirodkar, Sandra D. Schregenberger, Grace O. Tsien
  • Patent number: 6486089
    Abstract: The invention relates to a process for uniformly dispersing a transition metal metallocene complex on a carrier comprising (1) providing silica which is porous and has a particle size of 1 to 250 microns, having pores which have an average diameter of 50 to 500 Angstroms and having a pore volume of 0.5 to 5.0 cc/g; (2) slurrying the silica in an aliphatic solvent having a boiling point less than 110° C.; (3) providing a volume of a solution comprising metallocene and alumoxane wherein the volume of solution is less than that required to form a slurry of the silica, wherein the concentration of alumoxane, expressed as Al weight percent, is 5 to 20; (4) contacting the silica slurry (2) with said volume of said solution (3) and allowing the solution to impregnate the pores of silica and, to disperse the metallocene in and on the carrier; (5) evaporating the solvents from the contacted and impregnated silica to recover dry free-flowing catalyst particles.
    Type: Grant
    Filed: November 9, 1995
    Date of Patent: November 26, 2002
    Assignee: ExxonMobil Oil Corporation
    Inventors: Yury V. Kissin, Robert I. Mink, Thomas E. Nowlin, Pradeep P. Shirodkar, Sandra D. Schregenberger, Grace O. Tsien
  • Patent number: 6420298
    Abstract: A catalyst composition for the polymerization of one or more 1-olefins (e.g., ethylene) comprises a transition metal catalyst precursor and a cocatalyst, the transition metal catalyst precursor comprising a contact product of an unsubstituted metallocene compound and an aluminum alkyl compound in a hydrocarbon solvent solution. In another embodiment, the transition metal catalyst precursor is bimetallic and contains a non-metallocene transition metal catalyst component. When a bimetallic catalyst precursor is used, the resin product exhibits improved properties, and has a bimodal molecular weight distribution, long chain branching (LCB), and good bubble stability.
    Type: Grant
    Filed: August 31, 1999
    Date of Patent: July 16, 2002
    Assignee: ExxonMobil Oil Corporation
    Inventors: Robert I. Mink, Thomas E. Nowlin, Sandra D. Schregenberger, Kenneth G. Schurzky, Pradeep P. Shirodkar
  • Patent number: 6417130
    Abstract: A process of forming a bimetallic catalyst composition comprising a cocatalyst (a trialkylaluminum compound) and a catalyst precursor. The precursor comprises at least two transition metals; a metallocene complex is a source of one of said two transition metals. The precursor is produced in a single-pot process by contacting a porous carrier, in sequence, with a dialkylmagnesium compound, an aliphatic alcohol, a non-metallocene transition metal compound, a contact product of a metallocene complex and a trialkylaluminum compound, and methylalumoxane.
    Type: Grant
    Filed: March 25, 1996
    Date of Patent: July 9, 2002
    Assignee: ExxonMobil Oil Corporation
    Inventors: Robert I. Mink, Yury V. Kissin, Thomas E. Nowlin, Pradeep P. Shirodkar, Grace O. Tsien, Sandra D. Schregenberger
  • Patent number: 6403181
    Abstract: The invention relates to the production of high performance conduits. The invention includes the high performance conduits, the polyethylene resin used to make them, and the process for producing the resin which produces a resin with properties which are required, in accordance with the invention to yield the performance characteristics of the resin in conduits. The resin used in accordance with the invention exhibits a bimodal molecular weight distribution or broad molecular weight distribution and is of high molecular weight.
    Type: Grant
    Filed: April 25, 1997
    Date of Patent: June 11, 2002
    Assignee: Mobil Oil Corporation
    Inventors: David B. Barry, Vincent Joseph Crotty, Brian J. Egan, Robert I. Mink, Thomas Edward Nowlin, Sandra Denise Schregenberger, Kenneth George Schurzky, Pradeep Pandurang Shirodkar
  • Patent number: 6291384
    Abstract: An ethylene-alpha-olefin copolymerization catalyst is prepared by impregnating a silica calcined at elevated temperature sequentially with an organomagnesium compound such as dialkylmagnesium compound, a silane compound which is free of hydroxyl groups, such as tetraethyl orthosilicate. A transition metal component such as titanium tetrachloride is then incorporated into the support. Unexpectedly, the calcination temperature of the silica used to prepare the catalyst precursors has a strong influence on polymer product properties. By increasing the calcination temperature of the silica from 600° to 700° C. or higher temperatures, a catalyst precursor when activated produced ethylene/1-hexene copolymers with narrower molecular weight distributions (MWD) as manifested by a decrease of resin MFR values of ˜3-4 units. Activation of this catalyst precursor with a trialkylaluminum compound results in a catalyst system which is effective for the production of ethylene copolymers.
    Type: Grant
    Filed: July 28, 1997
    Date of Patent: September 18, 2001
    Assignee: Mobil Oil Corporation
    Inventors: Robert I. Mink, Thomas E. Nowlin
  • Patent number: 6153551
    Abstract: The supported catalyst disclosed herein is a contact product of two components. One component is the contact product of silica containing hydroxyl groups and alumoxane. This second component is the paraffinic-hydrocarbon soluble contact product of a metallocene compound of a transition metal and a trialkylaluminum compound.
    Type: Grant
    Filed: July 14, 1997
    Date of Patent: November 28, 2000
    Assignee: Mobil Oil Corporation
    Inventors: Yuri V. Kissin, Robert I. Mink, Thomas Edward Nowlin
  • Patent number: 6051525
    Abstract: A catalyst composition is described for preparing a high activity catalyst in silica which produces, in a single reactor, polyethylene with a broad or bimodal molecular weight distribution. The catalyst is prepared from the interaction of silica, previously calcined at 600.degree. C., with dibutylmagnesium, 1-butanol and titanium tetrachloride and a solution of methylalumoxane and ethylenebis[1-indenyl]zirconium dichloride.
    Type: Grant
    Filed: July 14, 1997
    Date of Patent: April 18, 2000
    Assignee: Mobil Corporation
    Inventors: Frederick Yip-Kwai Lo, Robert I. Mink, Thomas Edward Nowlin, Sandra Denise Schregenberger, Pradeep Pandurang Shirodkar
  • Patent number: 6001766
    Abstract: Catalyst compositions for homopolymerization and copolymerization of ethylene which comprise two transition metal compounds, one of them a cyclopentadienyl complex of a transition metal and another a non-metallocene derivative of a transition metal are described. The catalysts are activated by alkylalumoxanes that are soluble in non-aromatic hydrocarbons. Bimetallic catalysts of this invention are suitable for the manufacture of ethylene homopolymers and copolymers with broad bimodal molecular weight distributions. The alkyl alumoxanes have at least one [AR(R)--O--] repeating group in which R is an alkyl group of at least two carbon atoms.
    Type: Grant
    Filed: December 24, 1997
    Date of Patent: December 14, 1999
    Assignee: Mobil Oil Corporation
    Inventors: Yury V. Kissin, Robert I. Mink, Thomas E. Nowlin
  • Patent number: 5994256
    Abstract: A process is described for forming a catalyst precursor, for copolymerizing ethylene and an alpha-olefin of 3 to 10 carbon atoms, by preparing a contact mixture of an inert solvent, dibutylmagnesium and tetraalkyl orthosilicate which is free of precipitate and adding silica to the contact mixture to form a slurry to form a supported catalyst precursor. Titanium tetrachloride is then incorporated into the support in a specific ratio to the magnesium and silane components. Activation of this catalyst precursor with a trialkylaluminum compound results in a catalyst system which is effective for the production of ethylene copolymers.
    Type: Grant
    Filed: January 21, 1998
    Date of Patent: November 30, 1999
    Assignee: Mobil Oil Corporation
    Inventors: James F. Lottes, Robert I. Mink, Thomas E. Nowlin, Yury V. Kissin
  • Patent number: 5939348
    Abstract: An ethylene-alpha-olefin copolymerization catalyst is prepared by impregnating a porous support, such as silica, with a contact mixture of an organomagnesium compound such as dialkyl magnesium and a silane compound which is free of hydroxyl groups, such as tetraethyl orthosilicate. A transition metal component such as titanium tetrachloride is then incorporated into the support in a specific ratio to the magnesium and silane components. Activation of this catalyst precursor with a trialkylaluminum compound results in a catalyst system which is effective for the production of ethylene copolymers.
    Type: Grant
    Filed: December 12, 1996
    Date of Patent: August 17, 1999
    Assignee: Mobil Oil Corporation
    Inventors: Robert I. Mink, Thomas E. Nowlin
  • Patent number: 5882750
    Abstract: Single reactor bimodal MWD high molecular weight polyethylene film resin has improved bubble stability. The bimodal molecular weight distribution resin has low resin elasticity. Preferably the resin is made catalytically in one reactor. The preferred catalyst appears to control the properties of bubble stability and elasticity.
    Type: Grant
    Filed: July 3, 1995
    Date of Patent: March 16, 1999
    Assignee: Mobil Oil Corporation
    Inventors: Robert I. Mink, Thomas E. Nowlin, Sandra D. Schregenberger, Pradeep P. Shirodkar, Grace O. Tsien