Patents by Inventor Robert J. Benkowski

Robert J. Benkowski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8323173
    Abstract: A physiologic control method and system for an implantable blood pump includes operating the pump at a predetermined speed and monitoring the patient's diastolic pump flow rate. The predetermined speed is varied in response to the diastolic pump flow rate. The pump speed may further be adjusted in response to the patient's heart rate. The speed may be increased and decreased in response to corresponding changes in the diastolic pump flow rate, and increased in response to an increase in heart rate.
    Type: Grant
    Filed: January 7, 2003
    Date of Patent: December 4, 2012
    Assignee: MicroMed Technology, Inc.
    Inventors: Robert J Benkowski, Gino F Morello
  • Publication number: 20090143635
    Abstract: A blood pump consisting of an inflow cannula, a stator fixed to the pump housing, a flow straightener, an impeller, and a diffuser. The pump may include a flow straightener assembly consisting of the flow straightener body and front shaft. The pump may include an impeller assembly with a bearing on the front hub section. The pump may have a body contour which is shaped such that the rear section of the flow straightener body blends into the inserted shaft and there is no axial gap between the end of the flow straightener other than the ends of the blades and the front hub of the impeller.
    Type: Application
    Filed: November 25, 2008
    Publication date: June 4, 2009
    Applicant: MICROMED TECHNOLOGY, INC.
    Inventors: Robert J. BENKOWSKI, Lee HUDSON
  • Patent number: 6652447
    Abstract: A controller module for an implantable pump system which has a pump motor includes a processor, a motor controller electrically coupled to the processor and adapted to power the pump motor such that the pump motor operates at a desired speed. The motor controller outputs digital representations of the pump motor operating parameters to the processor. A first memory device is coupled to the processor for storing the digital signals representing the pump motor operating parameters. The controller module further includes a user interface. The controller module may be coupled to a data acquisition system, which provides power and exchanges data with the controller module. The controller module may alternately be coupled to a home support system which provides power for the controller module and storage for system components.
    Type: Grant
    Filed: February 5, 2001
    Date of Patent: November 25, 2003
    Assignee: MicroMed Technology, Inc.
    Inventors: Robert J. Benkowski, Gino F. Morello
  • Patent number: 6605032
    Abstract: A controller module for an implantable pump system which has a pump motor includes a processor, a motor controller electrically coupled to the processor and adapted to power the pump motor such that the pump motor operates at a desired speed. The motor controller outputs digital representations of the pump motor operating parameters to the processor. A first memory device is coupled to the processor for storing the digital signals representing the pump motor operating parameters. The controller module further includes a user interface. The controller module may be coupled to a data acquisition system, which provides power and exchanges data with the controller module. The controller module may alternately be coupled to a home support system which provides power for the controller module and storage for system components.
    Type: Grant
    Filed: February 5, 2001
    Date of Patent: August 12, 2003
    Assignee: MicroMed Technology, Inc.
    Inventors: Robert J. Benkowski, Bryan E. Lynch, Gino F. Morello, William L. Winstrom
  • Publication number: 20030069465
    Abstract: A controller module for an implantable pump system which has a pump motor includes a processor, a motor controller electrically coupled to the processor and adapted to power the pump motor such that the pump motor operates at a desired speed. The motor controller outputs digital representations of the pump motor operating parameters to the processor. A first memory device is coupled to the processor for storing the digital signals representing the pump motor operating parameters. The controller module further includes a user interface. The controller module may be coupled to a data acquisition system, which provides power and exchanges data with the controller module. The controller module may alternately be coupled to a home support system which provides power for the controller module and storage for system components.
    Type: Application
    Filed: February 5, 2001
    Publication date: April 10, 2003
    Applicant: MicroMed Technology, Inc.
    Inventors: Robert J. Benkowski, Bryan E. Lynch, Gino F. Morello, William L. Winstrom
  • Publication number: 20010037093
    Abstract: A controller module for an implantable pump system which has a pump motor includes a processor, a motor controller electrically coupled to the processor and adapted to power the pump motor such that the pump motor operates at a desired speed. The motor controller outputs digital representations of the pump motor operating parameters to the processor. A first memory device is coupled to the processor for storing the digital signals representing the pump motor operating parameters. The controller module further includes a user interface. The controller module may be coupled to a data acquisition system, which provides power and exchanges data with the controller module. The controller module may alternately be coupled to a home support system which provides power for the controller module and storage for system components.
    Type: Application
    Filed: February 5, 2001
    Publication date: November 1, 2001
    Applicant: MicroMed Technology, Inc.
    Inventors: Robert J. Benkowski, Bryan E. Lynch, Gino F. Morello, William L. Winstrom
  • Patent number: 6183412
    Abstract: A controller module for an implantable pump system which has a pump motor includes a processor, a motor controller electrically coupled to the processor and adapted to power the pump motor such that the pump motor operates at a desired speed. The motor controller outputs digital representations of the pump motor operating parameters to the processor. A first memory device is coupled to the processor for storing the digital signals representing the pump motor operating parameters. The controller module further includes a user interface. The controller module may be coupled to a data acquisition system, which provides power and exchanges data with the controller module. The controller module may alternately be coupled to a home support system which provides power for the controller module and storage for system components.
    Type: Grant
    Filed: October 2, 1998
    Date of Patent: February 6, 2001
    Assignee: Micromed Technology, Inc.
    Inventors: Robert J. Benkowski, Bryan E. Lynch, Gino F. Morello, William L. Winstrom
  • Patent number: 6058958
    Abstract: The present invention relates to a pulsatile flow system and method. The pulsatile flow system includes a reservoir, a pressure riser and a first fluid passage connected between the reservoir and the pressure riser. The system further includes a device adapted to expel fluid from the reservoir through the first fluid passage to the pressure riser. A second fluid passage is connected between the pressure riser and the reservoir, and is adapted to allow fluid to flow unidirectionally therethrough, from the pressure riser to the reservoir. The pulsatile flow system may be adapted to provide pulsatile fluid flow through a medical device, such as a ventricle assist device or mechanical heart valve, to replicate a heart's pumping action for testing the device.
    Type: Grant
    Filed: November 5, 1998
    Date of Patent: May 9, 2000
    Assignee: MicroMed Technology, Inc.
    Inventors: Robert J. Benkowski, Bryan E. Lynch
  • Patent number: 5947892
    Abstract: A blood pump that comprises a pump housing having a blood flow path therethrough, a blood inlet, and a blood outlet; a stator mounted to the pump housing, the stator having a stator field winding for producing a stator magnetic field; a flow straightener located within the pump housing, and comprising a flow straightener hub and at least one flow straightener blade attached to the flow straightener hub; a rotor mounted within the pump housing for rotation in response to the stator magnetic field, the rotor comprising an inducer and an impeller; the inducer being located downstream of the flow straightener, and comprising an inducer hub and at least one inducer blade attached to the inducer hub; the impeller being located downstream of the inducer, and comprising an impeller hub and at least one impeller blade attached to the impeller hub; and preferably also comprising a diffuser downstream of the impeller, the diffuser comprising a diffuser hub and at least one diffuser blade.
    Type: Grant
    Filed: December 13, 1996
    Date of Patent: September 7, 1999
    Assignee: MicroMed Technology, Inc.
    Inventors: Robert J. Benkowski, Cetin Kiris, Dochan Kwak, Bernard J. Rosenbaum, James W. Bacak, Michael E. DeBakey
  • Patent number: 5692882
    Abstract: A rotary blood pump includes a pump housing for receiving a flow straightener, a rotor mounted on rotor bearings and having an inducer portion and an impeller portion, and a diffuser. The entrance angle, outlet angle, axial and radial clearances of blades associated with the flow straightener, inducer portion, impeller portion and diffuser are optimized to minimize hemolysis while maintaining pump efficiency. The rotor bearing includes a bearing chamber that is filled with cross-linked blood or other bio-compatible material. A back emf integrated circuit regulates rotor operation and a microcomputer may be used to control one or more back emf integrated circuits. A plurality of magnets are disposed in each of a plurality of impeller blades with a small air gap. A stator may be axially adjusted on the pump housing to absorb bearing load and maximize pump efficiency.
    Type: Grant
    Filed: May 22, 1996
    Date of Patent: December 2, 1997
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Richard J. Bozeman, Jr., James W. Akkerman, Gregory S. Aber, George Arthur Van Damm, James W. Bacak, Paul A. Svejkovsky, Robert J. Benkowski
  • Patent number: 5678306
    Abstract: Methods are provided for minimizing damage to blood in a blood pump wherein the blood pump comprises a plurality of pump components that may affect blood damage such as clearance between pump blades and housing, number of impeller blades, rounded or flat blade edges, variations in entrance angles of blades, impeller length, and the like. The process comprises selecting a plurality of pump components believed to affect blood damage such as those listed hereinbefore. Construction variations for each of the plurality of pump components are then selected. The pump components and variations are preferably listed in a matrix for easy visual comparison of test results. Blood is circulated through a pump configuration to test each variation of each pump component. After each test, total blood damage is determined for the blood pump. Preferably each pump component variation is tested at least three times to provide statistical results and check consistency of results.
    Type: Grant
    Filed: May 26, 1995
    Date of Patent: October 21, 1997
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Richard J. Bozeman, Jr., James W. Akkerman, Gregory S. Aber, George Arthur Van Damm, James W. Bacak, Paul A. Svejkovsky, Robert J. Benkowski
  • Patent number: 5527159
    Abstract: A rotary blood pump includes a pump housing for receiving a flow straightener, a rotor mounted on rotor bearings and having an inducer portion and an impeller portion, and a diffuser. The entrance angle, outlet angle, axial and radial clearances of blades associated with the flow straightener, inducer portion, impeller portion and diffuser are optimized to minimize hemolysis while maintaining pump efficiency. The rotor bearing includes a bearing chamber that is filled with cross-linked blood or other bio-compatible material. A back emf integrated circuit regulates rotor operation and a microcomputer may be used to control one or more back emf integrated circuits. A plurality of magnets are disposed in each of a plurality of impeller blades with a small air gap. A stator may be axially adjusted on the pump housing to absorb bearing load and maximize pump efficiency.
    Type: Grant
    Filed: November 10, 1993
    Date of Patent: June 18, 1996
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Richard J. Bozeman, Jr., James W. Akkerman, Gregory S. Aber, George A. Van Damm, James W. Bacak, Paul A. Svejkovsky, Robert J. Benkowski