Patents by Inventor Robert J. Bucki

Robert J. Bucki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9070551
    Abstract: A library of cells for designing an integrated circuit, the library comprises continuous diffusion compatible (CDC) cells. A CDC cell includes a p-doped diffusion region electrically connected to a supply rail and continuous from the left edge to the right edge of the CDC cell; a first polysilicon gate disposed above the p-doped diffusion region and electrically connected to the p-doped diffusion region; an n-doped diffusion region electrically connected to a ground rail and continuous from the left edge to the right edge; a second polysilicon gate disposed above the n-doped diffusion region and electrically connected to the n-doped diffusion region; a left floating polysilicon gate disposed over the p-doped and n-doped diffusion regions and proximal to the left edge; and a right floating polysilicon gate disposed over the p-doped and n-doped diffusion regions and proximal to the right edge.
    Type: Grant
    Filed: August 23, 2013
    Date of Patent: June 30, 2015
    Assignee: Qualcomm Incorporated
    Inventors: Benjamin John Bowers, James W. Hayward, Charanya Gopal, Gregory Christopher Burda, Robert J. Bucki, Chock H. Gan, Giridhar Nallapati, Matthew D. Youngblood, William R. Flederbach
  • Publication number: 20150064864
    Abstract: A library of cells for designing an integrated circuit, the library comprises continuous diffusion compatible (CDC) cells. A CDC cell includes a p-doped diffusion region electrically connected to a supply rail and continuous from the left edge to the right edge of the CDC cell; a first polysilicon gate disposed above the p-doped diffusion region and electrically connected to the p-doped diffusion region; an n-doped diffusion region electrically connected to a ground rail and continuous from the left edge to the right edge; a second polysilicon gate disposed above the n-doped diffusion region and electrically connected to the n-doped diffusion region; a left floating polysilicon gate disposed over the p-doped and n-doped diffusion regions and proximal to the left edge; and a right floating polysilicon gate disposed over the p-doped and n-doped diffusion regions and proximal to the right edge.
    Type: Application
    Filed: November 11, 2014
    Publication date: March 5, 2015
    Inventors: Benjamin John BOWERS, James W. HAYWARD, Charanya GOPAL, Gregory Christopher BURDA, Robert J. BUCKI, Chock H. GAN, Giridhar NALLAPATI, Matthew D. YOUNGBLOOD, William R. FLEDERBACH
  • Publication number: 20140367760
    Abstract: A library of cells for designing an integrated circuit, the library comprises continuous diffusion compatible (CDC) cells. A CDC cell includes a p-doped diffusion region electrically connected to a supply rail and continuous from the left edge to the right edge of the CDC cell; a first polysilicon gate disposed above the p-doped diffusion region and electrically connected to the p-doped diffusion region; an n-doped diffusion region electrically connected to a ground rail and continuous from the left edge to the right edge; a second polysilicon gate disposed above the n-doped diffusion region and electrically connected to the n-doped diffusion region; a left floating polysilicon gate disposed over the p-doped and n-doped diffusion regions and proximal to the left edge; and a right floating polysilicon gate disposed over the p-doped and n-doped diffusion regions and proximal to the right edge.
    Type: Application
    Filed: August 23, 2013
    Publication date: December 18, 2014
    Applicant: Qualcomm Incorporated
    Inventors: Benjamin John BOWERS, James W. HAYWARD, Charanya GOPAL, Gregory Christopher BURDA, Robert J. BUCKI, Chock H. GAN, Giridhar NALLAPATI, Matthew D. YOUNGBLOOD, William R. FLEDERBACH
  • Patent number: 8782576
    Abstract: A library of cells for designing an integrated circuit, the library comprises continuous diffusion compatible (CDC) cells. A CDC cell includes a p-doped diffusion region electrically connected to a supply rail and continuous from the left edge to the right edge of the CDC cell; a first polysilicon gate disposed above the p-doped diffusion region and electrically connected to the p-doped diffusion region; an n-doped diffusion region electrically connected to a ground rail and continuous from the left edge to the right edge; a second polysilicon gate disposed above the n-doped diffusion region and electrically connected to the n-doped diffusion region; a left floating polysilicon gate disposed over the p-doped and n-doped diffusion regions and proximal to the left edge; and a right floating polysilicon gate disposed over the p-doped and n-doped diffusion regions and proximal to the right edge.
    Type: Grant
    Filed: August 26, 2013
    Date of Patent: July 15, 2014
    Assignee: QUALCOMM Incorporated
    Inventors: Benjamin John Bowers, James W. Hayward, Charanya Gopal, Gregory Christopher Burda, Robert J. Bucki, Chock H. Gan, Giridhar Nallapati, Matthew D. Youngblood, William R. Flederbach
  • Publication number: 20140181761
    Abstract: Embodiments of the disclosure include identifying circuit elements for selective inclusion in speed-push processing and related circuit systems, apparatus, and computer-readable media. A method for altering a speed-push mask is provided, including analyzing a circuit design comprising a plurality of cells to which a speed-push mask is applied to identify at least one of the plurality of cells as having performance margin. The speed-push mask is altered such that the at least one of the plurality of cells having performance margin may be fabricated as a non-speed-pushed cell. Additionally, a method for creating a speed-push mask is provided, including analyzing a circuit design comprising a plurality of cells to identify at least one of the plurality of cells below a performance threshold. A speed-push mask is created such that the at least one of the plurality of cells below the performance threshold may be fabricated as a speed-pushed cell.
    Type: Application
    Filed: December 21, 2012
    Publication date: June 26, 2014
    Applicant: QUALCOMM Incorporated
    Inventors: Jeffrey H. Fischer, William R. Flederbach, Kyungseok Kim, Robert J. Bucki, Chock H. Gan, William J. Goodall, III
  • Patent number: 8576599
    Abstract: A multi-wafer CAM cell in which the negative effects of increased travel distance have been substantially reduced is provided. The multi-wafer CAM cell is achieved in the present invention by utilizing three-dimensional integration in which multiple active circuit layers are vertically stack and vertically aligned interconnects are employed to connect a device from one of the stacked layers to another device in another stack layer. By vertically stacking multiple active circuit layers with vertically aligned interconnects, each compare port of the inventive CAM cell can be implemented on a separate layer above or below the primary data storage cell. This allows the multi-wafer CAM structure to be implemented within the same area footprint as a standard Random Access Memory (RAM) cell, minimizing data access and match compare delays.
    Type: Grant
    Filed: February 2, 2012
    Date of Patent: November 5, 2013
    Assignee: International Business Machines Corporation
    Inventors: Jagreet S. Atwal, Joseph S. Barnes, Kerry Bernstein, Robert J. Bucki, Jason A. Cox
  • Patent number: 8513791
    Abstract: A multi-ported CAM cell in which the negative effects of increased travel distance have been substantially reduced is provided. The multi-ported CAM cell is achieved in the present invention by utilizing three-dimensional integration in which multiple active circuit layers are vertically stack and vertically aligned interconnects are employed to connect a device from one of the stacked layers to another device in another stack layer. By vertically stacking multiple active circuit layers with vertically aligned interconnects, each compare port of the multi-port CAM can be implemented on a separate layer above or below the primary data storage cell. This allows the multi-port CAM structure to be implemented within the same area footprint as a standard Random Access Memory (RAM) cell, minimizing data access and match compare delays. Each compare match line and data bit line has the length associated with a simple two-dimensional Static Random Access Memory (SRAM) cell array.
    Type: Grant
    Filed: May 18, 2007
    Date of Patent: August 20, 2013
    Assignee: International Business Machines Corporation
    Inventors: Robert J. Bucki, Jagreet S. Atwal, Joseph S. Barnes, Kerry Bernstein, Eric Robinson
  • Patent number: 8343814
    Abstract: A multi-ported CAM cell in which the negative effects of increased travel distance have been substantially reduced is provided. The multi-ported CAM cell is achieved in the present invention by utilizing three-dimensional integration in which multiple active circuit layers are vertically stack and vertically aligned interconnects are employed to connect a device from one of the stacked layers to another device in another stack layer. By vertically stacking multiple active circuit layers with vertically aligned interconnects, each compare port of the multi-port CAM can be implemented on a separate layer above or below the primary data storage cell. This allows the multi-port CAM structure to be implemented within the same area footprint as a standard Random Access Memory (RAM) cell, minimizing data access and match compare delays. Each compare match line and data bit line has the length associated with a simple two-dimensional Static Random Access Memory (SRAM) cell array.
    Type: Grant
    Filed: August 17, 2009
    Date of Patent: January 1, 2013
    Assignee: International Business Machines Corporation
    Inventors: Robert J. Bucki, Jagreet S. Atwal, Joseph S. Barnes, Kerry Bernstein, Eric Robinson
  • Publication number: 20120127771
    Abstract: A multi-wafer CAM cell in which the negative effects of increased travel distance have been substantially reduced is provided. The multi-wafer CAM cell is achieved in the present invention by utilizing three-dimensional integration in which multiple active circuit layers are vertically stack and vertically aligned interconnects are employed to connect a device from one of the stacked layers to another device in another stack layer. By vertically stacking multiple active circuit layers with vertically aligned interconnects, each compare port of the inventive CAM cell can be implemented on a separate layer above or below the primary data storage cell. This allows the multi-wafer CAM structure to be implemented within the same area footprint as a standard Random Access Memory (RAM) cell, minimizing data access and match compare delays.
    Type: Application
    Filed: February 2, 2012
    Publication date: May 24, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jagreet S. Atwal, Joseph S. Barnes, Kerry Bernstein, Robert J. Bucki, Jason A. Cox
  • Publication number: 20090305462
    Abstract: A multi-ported CAM cell in which the negative effects of increased travel distance have been substantially reduced is provided. The multi-ported CAM cell is achieved in the present invention by utilizing three-dimensional integration in which multiple active circuit layers are vertically stack and vertically aligned interconnects are employed to connect a device from one of the stacked layers to another device in another stack layer. By vertically stacking multiple active circuit layers with vertically aligned interconnects, each compare port of the multi-port CAM can be implemented on a separate layer above or below the primary data storage cell. This allows the multi-port CAM structure to be implemented within the same area footprint as a standard Random Access Memory (RAM) cell, minimizing data access and match compare delays. Each compare match line and data bit line has the length associated with a simple two-dimensional Static Random Access Memory (SRAM) cell array.
    Type: Application
    Filed: August 17, 2009
    Publication date: December 10, 2009
    Applicant: International Business Machines Corporation
    Inventors: Robert J. Bucki, Jagreet S. Atwal, Joseph S. Barnes, Kerry Bernstein, Eric Robinson
  • Publication number: 20080291767
    Abstract: A multi-port register file (e.g., memory element) is provided in which each read port of the register file is located in a separate wafer above and/or below the primary data storage element. This is achieved in the present invention by utilizing three-dimensional integration in which multiple active circuit layers are vertically stacked and vertically aligned interconnects are employed to connect a device from one of the stacked layers to another device in another stacked layer.
    Type: Application
    Filed: May 21, 2007
    Publication date: November 27, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Joseph S. Barnes, Jagreet S. Atwal, Kerry Bernstein, Robert J. Bucki
  • Publication number: 20080288720
    Abstract: A multi-wafer CAM cell in which the negative effects of increased travel distance have been substantially reduced is provided. The multi-wafer CAM cell is achieved in the present invention by utilizing three-dimensional integration in which multiple active circuit layers are vertically stack and vertically aligned interconnects are employed to connect a device from one of the stacked layers to another device in another stack layer. By vertically stacking multiple active circuit layers with vertically aligned interconnects, each compare port of the inventive CAM cell can be implemented on a separate layer above or below the primary data storage cell. This allows the multi-wafer CAM structure to be implemented within the same area footprint as a standard Random Access Memory (RAM) cell, minimizing data access and match compare delays.
    Type: Application
    Filed: May 18, 2007
    Publication date: November 20, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jagreet S. Atwal, Joseph S. Barnes, Kerry Bernstein, Robert J. Bucki, Jason A. Cox
  • Publication number: 20080283995
    Abstract: A multi-ported CAM cell in which the negative effects of increased travel distance have been substantially reduced is provided. The multi-ported CAM cell is achieved in the present invention by utilizing three-dimensional integration in which multiple active circuit layers are vertically stack and vertically aligned interconnects are employed to connect a device from one of the stacked layers to another device in another stack layer. By vertically stacking multiple active circuit layers with vertically aligned interconnects, each compare port of the multi-port CAM can be implemented on a separate layer above or below the primary data storage cell. This allows the multi-port CAM structure to be implemented within the same area footprint as a standard Random Access Memory (RAM) cell, minimizing data access and match compare delays. Each compare match line and data bit line has the length associated with a simple two-dimensional Static Random Access Memory (SRAM) cell array.
    Type: Application
    Filed: May 18, 2007
    Publication date: November 20, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Robert J. Bucki, Jagreet S. Atwal, Joseph S. Barnes, Kerry Bernstein, Eric Robinson