Patents by Inventor Robert J. Callanan
Robert J. Callanan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11171229Abstract: The present disclosure relates to a power module that has a housing with an interior chamber and a plurality of switch modules interconnected to facilitate switching power to a load. Each of the plurality of switch modules comprises at least one transistor and at least one diode mounted within the interior chamber and both the at least one transistor and the at least one diode are majority carrier devices, are formed of a wide bandgap material system, or both. The switching modules may be arranged in virtually any fashion depending on the application. For example, the switching modules may be arranged in a six-pack, full H-bridge, half H-bridge, single switch or the like.Type: GrantFiled: April 10, 2017Date of Patent: November 9, 2021Assignee: Cree, Inc.Inventors: Mrinal K. Das, Robert J. Callanan, Henry Lin, John Williams Palmour
-
Publication number: 20170213811Abstract: The present disclosure relates to a power module that has a housing with an interior chamber and a plurality of switch modules interconnected to facilitate switching power to a load. Each of the plurality of switch modules comprises at least one transistor and at least one diode mounted within the interior chamber and both the at least one transistor and the at least one diode are majority carrier devices, are formed of a wide bandgap material system, or both. The switching modules may be arranged in virtually any fashion depending on the application. For example, the switching modules may be arranged in a six-pack, full H-bridge, half H-bridge, single switch or the like.Type: ApplicationFiled: April 10, 2017Publication date: July 27, 2017Inventors: Mrinal K. Das, Robert J. Callanan, Henry Lin, John Williams Palmour
-
Patent number: 9640617Abstract: The present disclosure relates to a power module that has a housing with an interior chamber and a plurality of switch modules interconnected to facilitate switching power to a load. Each of the plurality of switch modules comprises at least one transistor and at least one diode mounted within the interior chamber and both the at least one transistor and the at least one diode are majority carrier devices, are formed of a wide bandgap material system, or both. The switching modules may be arranged in virtually any fashion depending on the application. For example, the switching modules may be arranged in a six-pack, full H-bridge, half H-bridge, single switch or the like.Type: GrantFiled: May 14, 2013Date of Patent: May 2, 2017Assignee: Cree, Inc.Inventors: Mrinal K. Das, Robert J. Callanan, Henry Lin, John Williams Palmour
-
Patent number: 9344077Abstract: A circuit, which includes a high voltage driver, is disclosed. The high voltage driver includes a P-type field effect transistor (PFET) and a source bias circuit. The source bias circuit receives a low voltage input signal and applies a direct current (DC) bias to the low voltage input signal to provide a DC biased signal. The PFET has a first source, a first gate, and a first drain. The first source receives the DC biased signal. The first gate receives a first low voltage DC supply signal. The first drain provides a high voltage output signal based on the DC biased signal and the first low voltage DC supply signal. In this regard, the high voltage driver receives and translates the low voltage input signal to provide the high voltage output signal.Type: GrantFiled: April 4, 2012Date of Patent: May 17, 2016Assignee: Cree, Inc.Inventor: Robert J. Callanan
-
Patent number: 8963576Abstract: A switching device driver, which includes switching circuitry and a first capacitive element, which is coupled to the switching circuitry, is disclosed. The switching circuitry receives a logic level input signal and provides a switching control output signal to a switching device based on the logic level input signal. When the logic level input signal has a first logic level, the switching circuitry charges the first capacitive element. When the logic level input signal transitions from the first logic level to a second logic level, the switching circuitry at least partially discharges the first capacitive element to rapidly transition the switching control output signal, thereby causing the switching device to quickly change states.Type: GrantFiled: October 19, 2012Date of Patent: February 24, 2015Assignee: Cree, Inc.Inventor: Robert J. Callanan
-
Patent number: 8817441Abstract: A circuit breaker is provided that includes primary and secondary paths that extend between first and second terminals. The primary path extends between the first and second terminals and through a first switch. The secondary path extends between the first and second terminals and through the second switch and a semiconductor switching element. During normal operation, a control system maintains the first and second switches in closed position and the semiconductor switching element in blocking state. When a fault condition occurs in the load current, the control system detects the fault condition and sets the semiconductor switching element to conducting state. The control system then sets the first switch to open position such that the load current flows between the first and second terminals through the secondary path. The control system then sets the second switch to open position and the semiconductor switching element to blocking state.Type: GrantFiled: August 4, 2010Date of Patent: August 26, 2014Assignee: Cree, Inc.Inventor: Robert J. Callanan
-
Publication number: 20140111246Abstract: A switching device driver, which includes switching circuitry and a first capacitive element, which is coupled to the switching circuitry, is disclosed. The switching circuitry receives a logic level input signal and provides a switching control output signal to a switching device based on the logic level input signal. When the logic level input signal has a first logic level, the switching circuitry charges the first capacitive element. When the logic level input signal transitions from the first logic level to a second logic level, the switching circuitry at least partially discharges the first capacitive element to rapidly transition the switching control output signal, thereby causing the switching device to quickly change states.Type: ApplicationFiled: October 19, 2012Publication date: April 24, 2014Applicant: CREE, INC.Inventor: Robert J. Callanan
-
Publication number: 20130265084Abstract: A circuit, which includes a high voltage driver, is disclosed. The high voltage driver includes a P-type field effect transistor (PFET) and a source bias circuit. The source bias circuit receives a low voltage input signal and applies a direct current (DC) bias to the low voltage input signal to provide a DC biased signal. The PFET has a first source, a first gate, and a first drain. The first source receives the DC biased signal. The first gate receives a first low voltage DC supply signal. The first drain provides a high voltage output signal based on the DC biased signal and the first low voltage DC supply signal. In this regard, the high voltage driver receives and translates the low voltage input signal to provide the high voltage output signal.Type: ApplicationFiled: April 4, 2012Publication date: October 10, 2013Applicant: CREE, INC.Inventor: Robert J. Callanan
-
Publication number: 20130248883Abstract: The present disclosure relates to a power module that has a housing with an interior chamber and a plurality of switch modules interconnected to facilitate switching power to a load. Each of the plurality of switch modules comprises at least one transistor and at least one diode mounted within the interior chamber and both the at least one transistor and the at least one diode are majority carrier devices, are formed of a wide bandgap material system, or both. The switching modules may be arranged in virtually any fashion depending on the application. For example, the switching modules may be arranged in a six-pack, full H-bridge, half H-bridge, single switch or the like.Type: ApplicationFiled: May 14, 2013Publication date: September 26, 2013Applicant: Cree, Inc.Inventors: Mrinal K. Das, Robert J. Callanan, Henry Lin
-
Patent number: 8354690Abstract: Provided is a semiconductor bistable switching device that includes a thyristor portion including an anode layer, a drift layer, a gate layer and a cathode layer, the gate layer operable to receive a gate trigger current that, when the anode layer is positively biased relative to the cathode layer, causes the thyristor portion to latch into a conducting mode between the anode and the cathode. The device also includes a transistor portion formed on the thyristor portion, the transistor portion including a source, a drain and a transistor gate, the drain coupled to the cathode of the thyristor portion.Type: GrantFiled: August 31, 2009Date of Patent: January 15, 2013Assignee: Cree, Inc.Inventors: Robert J. Callanan, Sei-Hyung Ryu, Qingchun Zhang
-
Patent number: 8294507Abstract: An electronic device includes a wide bandgap thyristor having an anode, a cathode, and a gate terminal, and a wide bandgap bipolar transistor having a base, a collector, and an emitter terminal. The emitter terminal of the bipolar transistor is directly coupled to the anode terminal of the thyristor such that the bipolar transistor and the thyristor are connected in series. The bipolar transistor and the thyristor define a wide bandgap bipolar power switching device that is configured to switch between a nonconducting state and a conducting state that allows current flow between a first main terminal corresponding to the collector terminal of the bipolar transistor and a second main terminal corresponding to the cathode terminal of the thyristor responsive to application of a first control signal to the base terminal of the bipolar transistor and responsive to application of a second control signal to the gate terminal of the thyristor. Related control circuits are also discussed.Type: GrantFiled: May 8, 2009Date of Patent: October 23, 2012Assignee: Cree, Inc.Inventors: Qingchun Zhang, James Theodore Richmond, Robert J. Callanan
-
Publication number: 20120032727Abstract: A circuit breaker is provided that includes primary and secondary paths that extend between first and second terminals. The primary path extends between the first and second terminals and through a first switch. The secondary path extends between the first and second terminals and through the second switch and a semiconductor switching element. During normal operation, a control system maintains the first and second switches in closed position and the semiconductor switching element in blocking state. When a fault condition occurs in the load current, the control system detects the fault condition and sets the semiconductor switching element to conducting state. The control system then sets the first switch to open position such that the load current flows between the first and second terminals through the secondary path. The control system then sets the second switch to open position and the semiconductor switching element to blocking state.Type: ApplicationFiled: August 4, 2010Publication date: February 9, 2012Applicant: Cree Inc.Inventor: Robert J. Callanan
-
Publication number: 20110049561Abstract: Provided is a semiconductor bistable switching device that includes a thyristor portion including an anode layer, a drift layer, a gate layer and a cathode layer, the gate layer operable to receive a gate trigger current that, when the anode layer is positively biased relative to the cathode layer, causes the thyristor portion to latch into a conducting mode between the anode and the cathode. The device also includes a transistor portion formed on the thyristor portion, the transistor portion including a source, a drain and a transistor gate, the drain coupled to the cathode of the thyristor portion.Type: ApplicationFiled: August 31, 2009Publication date: March 3, 2011Inventors: Robert J. Callanan, Sei-Hyung Ryu, Qingchun Zhang
-
Publication number: 20100283529Abstract: An electronic device includes a wide bandgap thyristor having an anode, a cathode, and a gate terminal, and a wide bandgap bipolar transistor having a base, a collector, and an emitter terminal. The emitter terminal of the bipolar transistor is directly coupled to the anode terminal of the thyristor such that the bipolar transistor and the thyristor are connected in series. The bipolar transistor and the thyristor define a wide bandgap bipolar power switching device that is configured to switch between a nonconducting state and a conducting state that allows current flow between a first main terminal corresponding to the collector terminal of the bipolar transistor and a second main terminal corresponding to the cathode terminal of the thyristor responsive to application of a first control signal to the base terminal of the bipolar transistor and responsive to application of a second control signal to the gate terminal of the thyristor. Related control circuits are also discussed.Type: ApplicationFiled: May 8, 2009Publication date: November 11, 2010Inventors: Qingchun Zhang, James Theodore Richmond, Robert J. Callanan
-
Patent number: 5747981Abstract: In one embodiment of the present invention, an inductor comprises a core defining a first electromagnetic path, a second electromagnetic path and a third electromagnetic path, the third electromagnetic path substantially closing the first and second electromagnetic paths. The inductor also includes a first electrical coil wound about at least a portion of the first electromagnetic path and a second electrical coil wound about at least a portion of the second electromagnetic path. Another embodiment of the present invention uses the inductor in an electrical system such as a DC-to-DC converter. Inductors constructed according to the present invention can be used to provide "common mode" inductance and "differential mode" inductance in a single inductor.Type: GrantFiled: December 2, 1996Date of Patent: May 5, 1998Assignee: Ford Motor CompanyInventor: Robert J. Callanan