Patents by Inventor Robert J. Dowd
Robert J. Dowd has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20230279525Abstract: A sintered cemented carbide body including tungsten carbide, and a substantially cobalt-free binder including an iron-based alloy sintered with the tungsten carbide. The iron-based alloy is approximately 2-25% of the overall weight percentage of the sintered tungsten carbide and iron-based alloy. The tungsten carbide may be approximately 90 wt % and the iron-based alloy may be approximately 10 wt % of the overall weight percentage of the sintered tungsten carbide and iron-based alloy. The tungsten carbide may comprise a substantially same size before and after undergoing sintering. The iron-based alloy may be sintered with the tungsten carbide using a uniaxial hot pressing process, a spark plasma sintering process, or a pressureless sintering process. The sintered tungsten carbide and iron-based alloy has a hardness value of at least 15 GPa and a fracture toughness value of at least 11 MPa?m.Type: ApplicationFiled: August 12, 2022Publication date: September 7, 2023Inventors: John J. PITTARI, III, Steven M. Kilczewski, Jeffrey J. Swab, Kristopher A. Darling, Billy C. Hornbuckle, Heather A. Murdoch, Robert J. Dowding
-
Patent number: 11725262Abstract: A sintered cemented carbide body including tungsten carbide, and a substantially cobalt-free binder including an iron-based alloy sintered with the tungsten carbide. The iron-based alloy is approximately 2-25% of the overall weight percentage of the sintered tungsten carbide and iron-based alloy. The tungsten carbide may be approximately 90 wt % and the iron-based alloy may be approximately 10 wt % of the overall weight percentage of the sintered tungsten carbide and iron-based alloy. The tungsten carbide may comprise a substantially same size before and after undergoing sintering. The iron-based alloy may be sintered with the tungsten carbide using a uniaxial hot pressing process, a spark plasma sintering process, or a pressureless sintering process. The sintered tungsten carbide and iron-based alloy has a hardness value of at least 15 GPa and a fracture toughness value of at least 11 MPa?m.Type: GrantFiled: August 12, 2022Date of Patent: August 15, 2023Assignee: The United States of America as represented by the Secretary of the ArmyInventors: John J. Pittari, III, Steven M. Kilczewski, Jeffrey J. Swab, Kristopher A. Darling, Billy C. Hornbuckle, Heather A. Murdoch, Robert J. Dowding
-
Publication number: 20230160042Abstract: A sintered cemented carbide body including tungsten carbide, and a substantially cobalt-free binder including an iron-based alloy sintered with the tungsten carbide. The iron-based alloy is approximately 2-25% of the overall weight percentage of the sintered tungsten carbide and iron-based alloy. The tungsten carbide may be approximately 90 wt % and the iron-based alloy may be approximately 10 wt % of the overall weight percentage of the sintered tungsten carbide and iron-based alloy. The tungsten carbide may comprise a substantially same size before and after undergoing sintering. The iron-based alloy may be sintered with the tungsten carbide using a uniaxial hot pressing process, a spark plasma sintering process, or a pressureless sintering process. The sintered tungsten carbide and iron-based alloy has a hardness value of at least 15 GPa and a fracture toughness value of at least 11 MPa?m.Type: ApplicationFiled: August 12, 2022Publication date: May 25, 2023Inventors: John J. PITTARI, III, Steven M. Kilczewski, Jeffrey J. Swab, Kristopher A. Darling, Billy C. Hornbuckle, Heather A. Murdoch, Robert J. Dowding
-
Publication number: 20230140143Abstract: Glucose measurements are received and features for corresponding time periods over a time window are generated, the features being values indicating whether the user has been engaging in beneficial diabetes management behaviors. Using the aggregated features patterns indicating that beneficial diabetes management behaviors are not being engaged in are identified. Potential behavior modification feedback is generated by including in the potential behavior modification feedback at least one behavior modification feedback, for each of the identified patterns, that a user could take to engage in beneficial diabetes management behavior. At least one of the potential behavior modification feedback is selected and displayed or otherwise presented to the user.Type: ApplicationFiled: October 26, 2022Publication date: May 4, 2023Applicant: Dexcom, Inc.Inventors: Giada Acciaroli, Margaret A. Crawford, Mark Derdzinski, Lauren H. Jepson, Sarah Kate Pickus, Robert J. Dowd, Apurv U. Kamath
-
Publication number: 20230135175Abstract: Glucose level measurements or other data regarding a user are obtained over time, such as from a wearable glucose monitoring device being worn by the user. These glucose level measurements or other data are analyzed based on various rules to determine time periods during a day of, for example, good diabetes management by the user and provide feedback indicating such to the user. Good diabetes management is identified in various manners, such as by identifying improvements in glucose measurements for a given time period over one or more previous days, identifying a time period of the day during which glucose measurements were the best, identifying sustained positive patterns (e.g., good diabetes management for a same time period in each of multiple days), and so forth.Type: ApplicationFiled: October 26, 2022Publication date: May 4, 2023Applicant: Dexcom, Inc.Inventors: Lauren H. Jepson, Margaret A. Crawford, Mark Derdzinski, Robert J. Dowd, Giada Acciaroli, Sarah Kate Pickus, Apurv U. Kamath
-
Publication number: 20230136188Abstract: Glucose level measurements and additional data regarding a user are obtained over time, such as from a wearable glucose monitoring device being worn by the user. This additional data identifies events or conditions that may affect glucose of the user, such as physical activity engaged in by the user. A glucose prediction system analyzes, for example, activity data of the user and determines when a bout of physical activity occurs. The glucose prediction system predicts what the glucose measurements of the user would have been had the physical activity not occurred, and takes various actions based on the predicted glucose measurements (e.g., provides feedback to the user indicating what their glucose would have been had they not engaged in the physical activity).Type: ApplicationFiled: October 26, 2022Publication date: May 4, 2023Applicant: Dexcom, Inc.Inventors: Sarah Kate Pickus, Margaret A. Crawford, Mark Derdzinski, Lauren H. Jepson, Robert J. Dowd, Giada Acciaroli, Apurv U. Kamath
-
Publication number: 20230134919Abstract: Glucose level measurements of a user are obtained over time, such as from a wearable glucose monitoring device being worn by the user. These glucose level measurements can be produced substantially continuously, such that the device may be configured to produce the glucose level measurements at regular or irregular intervals of time, responsive to establishing a communicative coupling with a different device, and so forth. These glucose level measurements are analyzed to detect deviations from past glucose measurements, such as glucose measurements received earlier in the day or glucose measurements received at corresponding times of one or more preceding days. Indications of detected deviations are provided to the user or communicated elsewhere, such as to a healthcare professional.Type: ApplicationFiled: October 26, 2022Publication date: May 4, 2023Applicant: Dexcom, Inc.Inventors: Robert J. Dowd, Margaret A. Crawford, Mark Derdzinski, Lauren H. Jepson, Giada Acciaroli, Sarah Kate Pickus, Apurv U. Kamath
-
Publication number: 20230138673Abstract: Feedback regarding diabetes management by a user is generated, such as feedback identifying improvements in glucose measurements for a given time period over previous days, feedback identifying sustained positive patterns, feedback identifying deviations in glucose measurements between time periods, feedback identifying potential behavior modification that a user could take to engage in beneficial diabetes management behavior, feedback identifying what a user's glucose would have been had the particular events or conditions not occurred or not been present, and so forth. A feedback presentation system analyzes the identified feedback and selects feedback based on various rankings, rules and conditions for display to the user. The selected feedback is provided to the user at various times, such as regular reports (e.g., daily or weekly reports), in real time (e.g., notifying the user what his glucose level would have been had he not just taken a walk), and so forth.Type: ApplicationFiled: October 26, 2022Publication date: May 4, 2023Applicant: Dexcom, Inc.Inventors: Margaret A. Crawford, Mark Derdzinski, Giada Acciaroli, Robert J. Dowd, Lauren H. Jepson, Sarah Kate Pickus, Apurv U. Kamath
-
Patent number: 11434549Abstract: A sintered cemented carbide body including tungsten carbide, and a substantially cobalt-free binder including an iron-based alloy sintered with the tungsten carbide. The iron-based alloy is approximately 2-25% of the overall weight percentage of the sintered tungsten carbide and iron-based alloy. The tungsten carbide may be approximately 90 wt % and the iron-based alloy may be approximately 10 wt % of the overall weight percentage of the sintered tungsten carbide and iron-based alloy. The tungsten carbide may comprise a substantially same size before and after undergoing sintering. The iron-based alloy may be sintered with the tungsten carbide using a uniaxial hot pressing process, a spark plasma sintering process, or a pressureless sintering process. The sintered tungsten carbide and iron-based alloy has a hardness value of at least 15 GPa and a fracture toughness value of at least 11 MPa?m.Type: GrantFiled: November 9, 2017Date of Patent: September 6, 2022Assignee: The United States of America as represented by the Secretary of the ArmyInventors: John J. Pittari, III, Steven M. Kilczewski, Jeffrey J. Swab, Kristopher A. Darling, Billy C. Hornbuckle, Heather A. Murdoch, Robert J. Dowding
-
Publication number: 20200024702Abstract: A sintered cemented carbide body including tungsten carbide, and a substantially cobalt-free binder including an iron-based alloy sintered with the tungsten carbide. The iron-based alloy is approximately 2-25% of the overall weight percentage of the sintered tungsten carbide and iron-based alloy. The tungsten carbide may be approximately 90 wt % and the iron-based alloy may be approximately 10 wt % of the overall weight percentage of the sintered tungsten carbide and iron-based alloy. The tungsten carbide may comprise a substantially same size before and after undergoing sintering. The iron-based alloy may be sintered with the tungsten carbide using a uniaxial hot pressing process, a spark plasma sintering process, or a pressureless sintering process. The sintered tungsten carbide and iron-based alloy has a hardness value of at least 15 GPa and a fracture toughness value of at least 11 MPa?m.Type: ApplicationFiled: September 30, 2019Publication date: January 23, 2020Inventors: John J. Pittari, III, Steven M. Kilczewski, Jeffrey J. Swab, Kristopher A. Darling, Billy C. Hornbuckle, Heather A. Murdoch, Robert J. Dowding
-
Publication number: 20180142331Abstract: A sintered cemented carbide body including tungsten carbide, and a substantially cobalt-free binder including an iron-based alloy sintered with the tungsten carbide. The iron-based alloy is approximately 2-25 % of the overall weight percentage of the sintered tungsten carbide and iron-based alloy. The tungsten carbide may be approximately 90 wt % and the iron-based alloy may be approximately 10 wt % of the overall weight percentage of the sintered tungsten carbide and iron-based alloy. The tungsten carbide may comprise a substantially same size before and after undergoing sintering. The iron-based alloy may be sintered with the tungsten carbide using a uniaxial hot pressing process, a spark plasma sintering process, or a pressureless sintering process. The sintered tungsten carbide and iron-based alloy has a hardness value of at least 15 GPa and a fracture toughness value of at least 11 MPa?m.Type: ApplicationFiled: November 9, 2017Publication date: May 24, 2018Inventors: John J. Pittari, III, Steven M. Kilczewski, Jeffrey J. Swab, Kristopher A. Darling, Billy C. Hornbuckle, Heather A. Murdoch, Robert J. Dowding
-
Publication number: 20080120889Abstract: Gun barrels made from advanced materials have the potential to provide a significant increase in barrel life as well as a reduction in weight (for advanced ceramic materials) for small caliber systems. The potential use of advanced materials as gun barrels is severely limited due to the difficulty in introducing the rifling pattern on the inner diameter. Most projectiles coming out of the guns are spin stabilized (for aerodynamic flight stability). This spin is imparted by a rifling pattern (lands and grooves) in the inner surface of the gun barrel. The processing of gun barrels made from advanced materials with internal rifling pattern poses a tremendous processing challenge to the materials community. The rifling lands and grooves and desired twist rate coupled with the difficulty of machining some of the advanced materials (ceramics, cermets, hardmetals, etc.) makes the economic manufacturing of such gun barrels extremely difficult.Type: ApplicationFiled: July 3, 2006Publication date: May 29, 2008Inventors: Animesh Bose, Robert J. Dowding, Jeffrey J. Swab
-
Patent number: 4970983Abstract: A horn for connection to a pressurized fluid container for sounding multiple tones has a horn body defining a sound chamber and at least one tone altering aperture extending through the horn body into the sound chamber, a sound producing mechanism located within the horn body adjacent the sound chamber, and a trigger assembly for actuating the pressurized fluid container for release of pressurized fluid to flow through the sound producing mechanism into the sound chamber to produce a sound. The horn, when the trigger mechanism is actuated, produces sound having a first tone when the tone altering aperture is unobstructed and a second tone when the aperture is obstructed.Type: GrantFiled: September 28, 1988Date of Patent: November 20, 1990Assignee: Rule Industries, Inc.Inventors: Kenneth J. LeBlanc, Robert J. Dowding, William Anastos, Max Scholz