Patents by Inventor Robert J. Kimmerling

Robert J. Kimmerling has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220136949
    Abstract: Systems and methods for flowing particles, such as biological entities, in a fluidic channel(s) are generally provided. In some cases, the systems described herein are designed such that a single particle may be isolated from a plurality of particles and flowed into a fluidic channel (e.g., a microfluidic channel) and/or collected e.g., on fluidically isolated surfaces. For example, the single particle may be present in a plurality of particles of relatively high density and the single particle is flowed into a fluidic channel, such that it is separated from the plurality of particles. The particles may be spaced within a fluidic channel so that individual particles may be measured/observed over time. In certain embodiments, the particle may be a biological entity. Such article and methods may be useful, for example, for isolating single cells into individual wells of multi-well cell culture dishes (e.g., for single-cell analysis).
    Type: Application
    Filed: October 7, 2021
    Publication date: May 5, 2022
    Applicant: Massachusetts Institute of Technology
    Inventors: Robert J. Kimmerling, Nicholas L. Calistri, Scott R. Manalis, Selim Olcum, Mark M. Stevens
  • Publication number: 20220011296
    Abstract: Aspects of the application relate to methods and systems for evaluating treatment response by measuring treatment-induced changes at the single cell level. The disclosure provides methods for isolating single cells that are primary cancer cells, including primary cancer cells from solid tumors, and detecting in minutes to hours from their removal from the body the response of such cells to anti-cancer agents such as radiation, small molecules, biologies, DNA damaging agents and the like.
    Type: Application
    Filed: November 14, 2019
    Publication date: January 13, 2022
    Applicants: Dana-Farber Cancer Institute, Inc., Massachusetts Institute of Technology
    Inventors: Keith Ligon, Seth William Malinowski, Scott R. Manalis, Selim Olcum, Robert J. Kimmerling, Nicholas L. Calistri, David Weinstock, Mark Murakami, Mark M. Stevens
  • Patent number: 11162886
    Abstract: Systems and methods for flowing particles, such as biological entities, in a fluidic channel(s) are generally provided. In some cases, the systems described herein are designed such that a single particle may be isolated from a plurality of particles and flowed into a fluidic channel (e.g., a microfluidic channel) and/or collected e.g., on fluidically isolated surfaces. For example, the single particle may be present in a plurality of particles of relatively high density and the single particle is flowed into a fluidic channel, such that it is separated from the plurality of particles. The particles may be spaced within a fluidic channel so that individual particles may be measured/observed over time. In certain embodiments, the particle may be a biological entity. Such article and methods may be useful, for example, for isolating single cells into individual wells of multi-well cell culture dishes (e.g., for single-cell analysis).
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: November 2, 2021
    Assignee: Massachusetts Institute of Technology
    Inventors: Robert J. Kimmerling, Nicholas L. Calistri, Scott R. Manalis, Selim Olcum, Mark M. Stevens
  • Publication number: 20210046477
    Abstract: Systems and methods for measuring the properties (e.g., masses, weights, densities, etc.) of particles, such as biological entities, in a fluidic channel are generally provided. In some embodiments, the systems and methods comprise a plurality of suspended microchannel resonators (SMRs) configured to operate simultaneously. A particle or a plurality of particles may be dissolved or suspended in a fluid, whereby the fluid is flowed through an inlet (e.g., an inlet channel) that is fluidically connected in parallel and in fluid communication with at least one SMR (e.g. at least one SMR, at least two SMRs, at least four SMRs, at least 8, at least 16 SMRs). Fluid containing a particle or particles may flow into the plurality of SMRs, which may oscillate at a certain frequency (e.g., a resonance frequency). As particles pass through the SMR(s), the mass of particle may cause a change in the resonance frequency, the change in frequency which may be read out via embedded piezoresistors.
    Type: Application
    Filed: June 15, 2020
    Publication date: February 18, 2021
    Applicant: Massachusetts Institute of Technology
    Inventors: Scott R. Manalis, Selim Olcum, Robert J. Kimmerling, Max Stockslager
  • Publication number: 20200319162
    Abstract: A method of rapid functional analysis of cells is provided. A body fluid sample is introduced into a reservoir of a measurement instrument. A living cell is loaded directly from the body fluid sample into a channel of the measurement instrument in the absence of long-term cell culturing, cell passaging, and application of long-term drug pressure to cells. A functional biomarker of the living cells is measured while the living cell flows through the channel. The functional biomarker measured may be mass accumulation rate (MAR) or mass change. The measurement instrument may be a suspended microchannel resonator (SMR).
    Type: Application
    Filed: January 10, 2020
    Publication date: October 8, 2020
    Applicants: Massachusetts Institute of Technology, Dana-Farber Cancer Institute, Inc.
    Inventors: David Weinstock, Scott R. Manalis, Robert J. Kimmerling, Selim Olcum
  • Publication number: 20200224239
    Abstract: The invention provides devices and methods for measuring how living cells function. The measurements can be made from tissue biopsy samples to measure functional properties of living cells from a solid tumor. After measuring a functional property of a cell, the cell remains alive and is available for other subsequent analyses. In certain aspects, the invention provides a method for measuring a cancer marker. The method includes obtaining a tissue sample comprising living cells, disaggregating the tissue sample and loading individual live cells into an input channel of a measurement instrument, and flowing the live cells through the measurement instrument to measure a functional property of the live cells.
    Type: Application
    Filed: January 10, 2020
    Publication date: July 16, 2020
    Applicants: Massachusetts Institute of Technology, Dana-Farber Cancer Institute, Inc.
    Inventors: Keith Ligon, Scott R. Manalis, Mark M. Stevens, Robert J. Kimmerling
  • Publication number: 20180299362
    Abstract: Systems and methods for flowing particles, such as biological entities, in a fluidic channel(s) are generally provided. In some cases, the systems described herein are designed such that a single particle may be isolated from a plurality of particles and flowed into a fluidic channel (e.g., a microfluidic channel) and/or collected e.g., on fluidically isolated surfaces. For example, the single particle may be present in a plurality of particles of relatively high density and the single particle is flowed into a fluidic channel, such that it is separated from the plurality of particles. The particles may be spaced within a fluidic channel so that individual particles may be measured/observed over time. In certain embodiments, the particle may be a biological entity. Such article and methods may be useful, for example, for isolating single cells into individual wells of multi-well cell culture dishes (e.g., for single-cell analysis).
    Type: Application
    Filed: March 29, 2018
    Publication date: October 18, 2018
    Applicant: Massachusetts Institute of Technology
    Inventors: Robert J. Kimmerling, Nicholas L. Calistri, Scott R. Manalis, Selim Olcum, Mark M. Stevens