Patents by Inventor Robert J. Klingler

Robert J. Klingler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9181467
    Abstract: Disclosed herein are methods for extracting a kerogen-based product from subsurface shale formations. The methods utilize in-situ reaction of kerogen involving liquid phase chemistry at ambient temperatures at pressures for the subsurface shale formation. These methods rely on chemically modifying the shale-bound kerogen to render it mobile using metal particulate catalysts. In the methods disclosed herein a fluid comprising metal is provided to the subsurface shale formation comprising kerogen in an inorganic matrix. A reducing agent is provided to the subsurface shale formation. The kerogen is converted by contacting the kerogen with a metal particulate catalyst formed from the metal; and a mobile kerogen-based product is formed. At least a portion of the mobile kerogen-based product is recovered. The kerogen-derived product can be upgraded to provide commercial products.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: November 10, 2015
    Assignee: UCHICAGO ARGONNE, LLC
    Inventors: Robert J. Klingler, Randall E. Winans, Darren R. Locke, Marcus O. Wigand, Mark Dean Looney
  • Patent number: 8592075
    Abstract: The invention relates to a unique battery having a physicochemically active membrane separator/electrolyte-electrode monolith and method of making the same. The Applicant's invented battery employs a physicochemically active membrane separator/electrolyte-electrode that acts as a separator, electrolyte, and electrode, within the same monolithic structure. The chemical composition, physical arrangement of molecules, and physical geometry of the pores play a role in the sequestration and conduction of ions. In one preferred embodiment, ions are transported via the ion-hoping mechanism where the oxygens of the Al2O3 wall are available for positive ion coordination (i.e. Li+). This active membrane-electrode composite can be adjusted to a desired level of ion conductivity by manipulating the chemical composition and structure of the pore wall to either increase or decrease ion conduction.
    Type: Grant
    Filed: July 24, 2012
    Date of Patent: November 26, 2013
    Assignee: U.S. Department of Energy
    Inventors: Rex E. Gerald, II, Katarina J. Ruscic, Devin N. Sears, Luis J. Smith, Robert J. Klingler, Jerome W. Rathke
  • Patent number: 8541129
    Abstract: The present invention relates to a physicochemically-active porous membrane for electrochemical cells that purports dual functions: an electronic insulator (separator) and a unidirectional ion-transporter (electrolyte). The electrochemical cell membrane is activated for the transport of ions by contiguous ion coordination sites on the interior two-dimensional surfaces of the trans-membrane unidirectional pores. One dimension of the pore surface has a macroscopic length (1 nm-1000 ?m) and is directed parallel to the direction of an electric field, which is produced between the cathode and the anode electrodes of an electrochemical cell. The membrane material is designed to have physicochemical interaction with ions. Control of the extent of the interactions between the ions and the interior pore walls of the membrane and other materials, chemicals, or structures contained within the pores provides adjustability of the ionic conductivity of the membrane.
    Type: Grant
    Filed: July 19, 2010
    Date of Patent: September 24, 2013
    Assignee: U.S. Department of Energy
    Inventors: Rex E. Gerald, II, Katarina J. Ruscic, Devin N. Sears, Luis J. Smith, Robert J. Klingler, Jerome W. Rathke
  • Publication number: 20130161008
    Abstract: Disclosed herein are methods for extracting a kerogen-based product from subsurface shale formations. The methods utilize in-situ reaction of kerogen involving liquid phase chemistry at ambient temperatures at pressures for the subsurface shale formation. These methods rely on chemically modifying the shale-bound kerogen to render it mobile using metal particulate catalysts. In the methods disclosed herein a fluid comprising metal is provided to the subsurface shale formation comprising kerogen in an inorganic matrix. A reducing agent is provided to the subsurface shale formation. The kerogen is converted by contacting the kerogen with a metal particulate catalyst formed from the metal; and a mobile kerogen-based product is formed. At least a portion of the mobile kerogen-based product is recovered. The kerogen-derived product can be upgraded to provide commercial products.
    Type: Application
    Filed: December 22, 2011
    Publication date: June 27, 2013
    Applicants: Argonne National Laboratory, CHEVRON U.S.A. INC.
    Inventors: Robert J. KLINGLER, Randall E. Winans, Darren R. Locke, Marcus O. Wigand, Mark D. Looney
  • Patent number: 8227105
    Abstract: The invention relates to a unique battery having a physicochemically active membrane separator/electrolyte-electrode monolith and method of making the same. The Applicant's invented battery employs a physicochemically active membrane separator/electrolyte-electrode that acts as a separator, electrolyte, and electrode, within the same monolithic structure. The chemical composition, physical arrangement of molecules, and physical geometry of the pores play a role in the sequestration and conduction of ions. In one preferred embodiment, ions are transported via the ion-hoping mechanism where the oxygens of the Al2O3 wall are available for positive ion coordination (i.e. Li+). This active membrane-electrode composite can be adjusted to a desired level of ion conductivity by manipulating the chemical composition and structure of the pore wall to either increase or decrease ion conduction.
    Type: Grant
    Filed: November 14, 2007
    Date of Patent: July 24, 2012
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Rex E. Gerald, II, Katarina J. Ruscic, Devin N. Sears, Luis J. Smith, Robert J. Klingler, Jerome W. Rathke
  • Patent number: 8119273
    Abstract: The invention relates to a unique battery having an active, porous membrane and method of making the same. More specifically the invention relates to a sealed battery system having a porous, metal oxide membrane with uniform, physicochemically functionalized ion channels capable of adjustable ionic interaction. The physicochemically-active porous membrane purports dual functions: an electronic insulator (separator) and a unidirectional ion-transporter (electrolyte). The electrochemical cell membrane is activated for the transport of ions by contiguous ion coordination sites on the interior two-dimensional surfaces of the trans-membrane unidirectional pores. The membrane material is designed to have physicochemical interaction with ions. Control of the extent of the interactions between the ions and the interior pore walls of the membrane and other materials, chemicals, or structures contained within the pores provides adjustability of the ionic conductivity of the membrane.
    Type: Grant
    Filed: March 23, 2007
    Date of Patent: February 21, 2012
    Assignee: The United States of America as represented by the Department of Energy
    Inventors: Rex E. Gerald, II, Katarina J. Ruscic, Devin N. Sears, Luis J. Smith, Robert J. Klingler, Jerome W. Rathke
  • Patent number: 7901830
    Abstract: The instant invention relates a solid-state electrochemical cell and a novel separator/electrolyte incorporated therein. A preferred embodiment of the invented electrochemical cell generally comprises a unique metal oxyhydroxide based (i.e. AlOOH) separator/electrolyte membrane sandwiched between a first electrode and a second electrode. A preferred novel separator/electrolyte comprises a nanoparticulate metal oxyhydroxide, preferably AlOOH and a salt which are mixed and then pressed together to form a monolithic metal oxyhydroxide-salt membrane.
    Type: Grant
    Filed: August 27, 2010
    Date of Patent: March 8, 2011
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Rex E. Gerald, II, Robert J. Klingler, Jerome W. Rathke
  • Patent number: 7887970
    Abstract: The instant invention relates a solid-state electrochemical cell and a novel separator/electrolyte incorporated therein. The invented electrochemical cell generally comprising: a unique metal oxyhydroxide based (i.e. AlOOH) separator/electrolyte membrane sandwiched between a first electrode and a second electrode. The novel separator/electrolyte comprises a nanoparticulate metal oxyhydroxide, preferably AlOOH and a salt which are mixed and then pressed together to form a monolithic metal oxyhydroxide-salt membrane.
    Type: Grant
    Filed: August 2, 2006
    Date of Patent: February 15, 2011
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Rex E. Gerald, II, Robert J. Klingler, Jerome W. Rathke
  • Patent number: 7737691
    Abstract: A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.
    Type: Grant
    Filed: August 26, 2008
    Date of Patent: June 15, 2010
    Assignee: The University of Chicago
    Inventors: Rex E. Gerald, II, Robert J. Klingler, Jerome W. Rathke, Rocio Diaz, Lela Vukovic
  • Patent number: 7501483
    Abstract: A method, apparatus, and system for constructing uniform macroscopic films with tailored geometric assemblies of molecules on the nanometer scale. The method, apparatus, and system include providing starting molecules of selected character, applying one or more force fields to the molecules to cause them to order and condense with NMR spectra and images being used to monitor progress in creating the desired geometrical assembly and functionality of molecules that comprise the films.
    Type: Grant
    Filed: July 11, 2006
    Date of Patent: March 10, 2009
    Assignee: The University of Chicago
    Inventors: Rex E. Gerald, II, Robert J. Klingler, Jerome W. Rathke, Rocio Diaz, Lela Vukovic
  • Publication number: 20080309337
    Abstract: A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.
    Type: Application
    Filed: August 26, 2008
    Publication date: December 18, 2008
    Inventors: Rex E. GERALD, II, Robert J. Klingler, Jerome W. Rathke, Rocio Diaz, Lela Vukovic
  • Patent number: 7456630
    Abstract: A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.
    Type: Grant
    Filed: July 11, 2006
    Date of Patent: November 25, 2008
    Assignee: U Chicago Argonne LLC
    Inventors: Rex E. Gerald, II, Robert J. Klingler, Jerome W. Rathke, Rocio Diaz, Lela Vukovic
  • Patent number: 7268552
    Abstract: A Toroid Cavity Detector (TCD) is provided for implementing nuclear magnetic resonance (NMR) studies of chemical reactions under conditions of high pressures and temperatures. A toroid cavity contains an elongated central conductor extending within the toroid cavity. The toroid cavity and central conductor generate an RF magnetic field for NMR analysis. A flow-through capillary sample container is located within the toroid cavity adjacent to the central conductor to subject a sample material flowing through the capillary to a static magnetic field and to enable NMR spectra to be recorded of the material in the capillary under a temperature and high pressure environment.
    Type: Grant
    Filed: June 21, 2005
    Date of Patent: September 11, 2007
    Assignee: United States of America as represented by the United States Department of Energy
    Inventors: Rex E. Gerald, II, Michael J. Chen, Robert J. Klingler, Jerome W. Rathke, Marc ter Horst
  • Patent number: 7226549
    Abstract: A solid state ion conducting electrolyte and a battery incorporating same. The electrolyte includes a polymer matrix with an alkali metal salt dissolved therein, the salt having an anion with a long or branched chain having not less than 5 carbon or silicon atoms therein. The polymer is preferably a polyether and the salt anion is preferably an alkyl or silyl moiety of from 5 to about 150 carbon/silicon atoms.
    Type: Grant
    Filed: December 10, 2002
    Date of Patent: June 5, 2007
    Assignee: UChicago Argonne, LLC
    Inventors: Rex E. Gerald, II, Jerome W. Rathke, Robert J. Klingler
  • Patent number: 6720769
    Abstract: A detecting method and detector expands the capabilities of Nuclear Magnetic Resonance (NMR) analysis. A Rotational Exchange Gradient Imager (REGI) allows for real-time, in situ investigation of materials subjected to the effects of centrifugal force by NMR analysis. The REGI comprises a cylindrical stator formed of an electrically conductive, non-magnetic material, a rotor contained in the cylindrical stator formed of an electrically non-conductive, non-magnetic material, and a conductor located along a central axis of the cylindrical stator. A sample is contained within the rotor. The stator and central conductor serve to generate the RF magnetic field for NMR analysis. The rotor containing the sample is rotated within a stable air bearing formed between the cylindrical stator and rotor.
    Type: Grant
    Filed: June 21, 2002
    Date of Patent: April 13, 2004
    Assignee: The University of Chicago
    Inventors: Rex E. Gerald, II., Robert J. Klingler, Jerome W. Rathke
  • Patent number: 6674283
    Abstract: Imaging apparatus are used in a toroid cavity detector for nuclear magnetic resonance (NMR) analysis to hold samples relative to a principal detector element which is a flat metal conductor, the plane of which is parallel to the longitudinal axis of the toroid cavity. A sample is held adjacent to or in contact with the principal detector element so that the sample can be subjected to NMR analysis when a static main homogeneous magnetic field (B0) produced by a NMR magnetic device is applied to the toroid cavity and an RF excitation signal pulse is supplied from a potentiostat to the principal detector element so that an alternately energized and de-energized magnetic field (B1) is produced in the sample and through the toroid cavity.
    Type: Grant
    Filed: September 20, 2002
    Date of Patent: January 6, 2004
    Assignee: The University of Chicago
    Inventors: Rex E. Gerald, II, Robert J. Klingler, Jerome W. Rathke
  • Publication number: 20030138702
    Abstract: A solid state ion conducting electrolyte and a battery incorporating same. The electrolyte includes a polymer matrix with an alkali metal salt dissolved therein, the salt having an anion with a long or branched chain having not less than 5 carbon or silicon atoms therein. The polymer is preferably a polyether and the salt anion is preferably an alkyl or silyl moiety of from 5 to about 150 carbon/silicon atoms.
    Type: Application
    Filed: December 10, 2002
    Publication date: July 24, 2003
    Inventors: Rex E. Gerald, Jerome W. Rathke, Robert J. Klingler
  • Publication number: 20030052678
    Abstract: A detecting method and detector expands the capabilities of Nuclear Magnetic Resonance (NMR) analysis. A Rotational Exchange Gradient Imager (REGI) allows for real-time, in situ investigation of materials subjected to the effects of centrifugal force by NMR analysis. The REGI comprises a cylindrical stator formed of an electrically conductive, non-magnetic material, a rotor contained in the cylindrical stator formed of an electrically non-conductive, non-magnetic material, and a conductor located along a central axis of the cylindrical stator. A sample is contained within the rotor. The stator and central conductor serve to generate the RF magnetic field for NMR analysis. The rotor containing the sample is rotated within a stable air bearing formed between the cylindrical stator and rotor.
    Type: Application
    Filed: June 21, 2002
    Publication date: March 20, 2003
    Applicant: THE UNIVERSITY OF CHICAGO
    Inventors: Rex E. Gerald, Robert J. Klingler, Jerome W. Rathke
  • Publication number: 20030016019
    Abstract: Imaging apparatus are used in a toroid cavity detector for nuclear magnetic resonance (NMR) analysis to hold samples relative to a principal detector element which is a flat metal conductor, the plane of which is parallel to the longitudinal axis of the toroid cavity. A sample is held adjacent to or in contact with the principal detector element so that the sample can be subjected to NMR analysis when a static main homogeneous magnetic field (B0) produced by a NMR magnetic device is applied to the toroid cavity and an RF excitation signal pulse is supplied from a potentiostat to the principal detector element so that an alternately energized and de-energized magnetic field (B1) is produced in the sample and through the toroid cavity.
    Type: Application
    Filed: September 20, 2002
    Publication date: January 23, 2003
    Applicant: THE UNIVERSITY OF CHICAGO
    Inventors: Rex E. Gerald, Robert J. Klingler, Jerome W. Rathke
  • Patent number: 6469507
    Abstract: Imaging apparatus are used in a toroid cavity detector for nuclear magnetic resonance (NMR) analysis to hold samples relative to a principal detector element which is a flat metal conductor, the plane of which is parallel to the longitudinal axis of the toroid cavity. A sample is held adjacent to or in contact with the principal detector element so that the sample can be subjected to NMR analysis when a static main homogeneous magnetic field (B0) produced by a NMR magnetic device is applied to the toroid cavity and an RF excitation signal pulse is supplied from a potentiostat to the principal detector element so that an alternately energized and de-energized magnetic field (B1) is produced in the sample and through the toroid cavity.
    Type: Grant
    Filed: August 3, 2000
    Date of Patent: October 22, 2002
    Assignee: The University of Chicago
    Inventors: Rex E. Gerald, II, Robert J. Klingler, Jerome W. Rathke