Patents by Inventor Robert J. Monson

Robert J. Monson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240097499
    Abstract: A system that includes a power transmitting antenna (124) with a coiled conductor defined by a first axis and a second axis perpendicular to the first axis, where a single plane comprises the first axis and the second axis. The system includes a support layer (140, 142) comprising: a substantially planar top surface and a substantially planar bottom surface opposite the substantially planar top surface arranged parallel to the plane. The support layer also comprises a material with a predetermined resiliency. The support layer is configured to support a mass of a user and maintain a predetermined spacing between the plane of the power transmitting antenna and the user during compression of the material from the mass of the user.
    Type: Application
    Filed: February 24, 2022
    Publication date: March 21, 2024
    Inventors: Andrew Thomas Fried, Venkat R. Gaddam, Brett Otteson, Robert J. Monson, Ashutosh Mehra, Jacob P. Komarek, Sandra L. Hawley, Derek J. Olmschenk, Jacob L. Hammond
  • Publication number: 20240014694
    Abstract: A charging device is described. One example of a charging device described herein includes at least one coil contained in a housing, where the at least one coil wirelessly transfers energy to an implantable medical device. The charging device may further include a coil manipulator that adjusts a configuration of the at least one coil within the housing.
    Type: Application
    Filed: May 2, 2023
    Publication date: January 11, 2024
    Inventors: Andrew Thomas Fried, Robert J. Monson
  • Publication number: 20230361562
    Abstract: A wireless power transfer system and devices that are configured to perform techniques to detect a single fault in primary processing circuitry by using second, independent processing circuitry. The techniques may include calculating and verifying an integrated output power dose. Verifying the integrated output power dose may include, for example, secondary processing circuitry calculating the integral of power delivered over a predetermined time duration and compares the calculated integral to an expected integral dose curve stored at a memory location accessible by the secondary processing circuitry. The detection techniques may also include determining a maximum output power profile. The secondary processing circuitry may receive a commanded output power target from the primary processing circuitry and compare the commanded output power to the maximum allowed output power vs. time.
    Type: Application
    Filed: April 28, 2023
    Publication date: November 9, 2023
    Inventors: Andrew T. Fried, Charles M. Nowell, JR., Brett A. Otteson, Venkat R. Gaddam, Robert J. Monson
  • Publication number: 20230352988
    Abstract: Devices, systems, and techniques are described to detect when a power transmitting and receiving system is in an inefficient position, which may cause a thermal response that less desirable than a more efficient position. The system may power transmitting device configured to wirelessly transfer electromagnetic energy to a power receiving device. Processing circuitry of the system may compute a target output power deliverable by the power transmitting device for a first duration and control the power transmitting device to output the target output power based in part on a heat limit. The processing circuitry may further calculate an energy transfer efficiency to the power receiving unit, update an adjustment factor based on the calculated energy transfer efficiency, and apply the adjustment factor to the heat limit for a subsequent duration.
    Type: Application
    Filed: June 6, 2023
    Publication date: November 2, 2023
    Inventors: Andrew Thomas Fried, Douglas W. Brown, Charles M. Nowell, Robert J. Monson, Venkat R. Gaddam, Brett Otteson
  • Publication number: 20230310869
    Abstract: A charging device includes a coil configured to wirelessly transfer energy to an implantable medical device. The charging device includes a phase change material. The charging device may include a ground plane. The phase change material is incorporated in the charging device, and a flexibility of the charging device is associated with a state of the phase change material. The ground plane is conformable to one or more surfaces of a target subject. The charging device may include a heat reduction assembly. The heat reduction assembly includes a material disposed in contact with the coil. The phase change material absorbs at least a portion of heat generated by the coil.
    Type: Application
    Filed: April 1, 2022
    Publication date: October 5, 2023
    Inventors: Andrew Thomas Fried, Robert J. Monson
  • Patent number: 11705763
    Abstract: Devices, systems, and techniques are described to detect when a power transmitting and receiving system is in an inefficient position, which may cause a thermal response that less desirable than a more efficient position. The system may power transmitting device configured to wirelessly transfer electromagnetic energy to a power receiving device. Processing circuitry of the system may compute a target output power deliverable by the power transmitting device for a first duration and control the power transmitting device to output the target output power based in part on a heat limit. The processing circuitry may further calculate an energy transfer efficiency to the power receiving unit, update an adjustment factor based on the calculated energy transfer efficiency, and apply the adjustment factor to the heat limit for a subsequent duration.
    Type: Grant
    Filed: February 23, 2022
    Date of Patent: July 18, 2023
    Assignee: Medtronic, Inc.
    Inventors: Andrew Thomas Fried, Douglas W. Brown, Charles M. Nowell, Robert J. Monson, Venkat R. Gaddam, Brett Otteson
  • Publication number: 20230045399
    Abstract: Disclosed is a system for recharging a selected power source wirelessly, such as through a power transmission. The power source may be positioned within a subject and be charged wirelessly through the subject, such as tissue of the subject. A thermal transfer system is provided to transfer or transport thermal energy from a first position to a second position, such as away from the subject.
    Type: Application
    Filed: August 4, 2021
    Publication date: February 9, 2023
    Inventors: Robert J. MONSON, Andrew T. FRIED
  • Publication number: 20230043756
    Abstract: Disclosed is a system for recharging a selected power source wirelessly, such as through a power transmission. The power source may be positioned within a subject and be charged wirelessly through the subject, such as tissue of the subject. A thermal transfer system is provided to transfer or transport thermal energy from a first position to a second position, such as away from the subject.
    Type: Application
    Filed: August 4, 2021
    Publication date: February 9, 2023
    Inventors: Robert J. MONSON, Andrew T. FRIED
  • Publication number: 20230040626
    Abstract: Disclosed is a system for recharging a selected power source wirelessly, such as through a power transmission. The power source may be positioned within a subject and be charged wirelessly through the subject, such as tissue of the subject. A thermal transfer system is provided to transfer or transport thermal energy from a first position to a second position, such as away from the subject.
    Type: Application
    Filed: August 4, 2021
    Publication date: February 9, 2023
    Inventors: Robert J. MONSON, Andrew T. FRIED
  • Patent number: 11482888
    Abstract: The disclosure describes techniques to provide antennae configured to harvest radio-frequency (RF) energy from the nearby environment to provide electrical energy to an electrically powered device. Antennae may be configured in different shapes, lengths, locations, and materials to efficiently collect RF energy to be converted to electrical power. In some examples, RF energy may be harvested from existing sources, such as FM radio transmissions, communication transmissions such as Wi-Fi and BLUETOOTH, and similar existing sources. In other examples, antennae may be configured to collect energy from a source specifically designated to recharge the device. In some examples, the harvested RF energy may be sufficient to power the device. In other examples, the harvested RF energy may provide enough power to reduce the amount of recharging required by other means, such as by inductive recharging.
    Type: Grant
    Filed: June 17, 2021
    Date of Patent: October 25, 2022
    Assignee: MEDTRONIC, INC.
    Inventors: Robert J. Monson, Andrew Thomas Fried, Bruce T. Peacock
  • Publication number: 20220271574
    Abstract: Devices, systems, and techniques are described to detect when a power transmitting and receiving system is in an inefficient position, which may cause a thermal response that less desirable than a more efficient position. The system may power transmitting device configured to wirelessly transfer electromagnetic energy to a power receiving device. Processing circuitry of the system may compute a target output power deliverable by the power transmitting device for a first duration and control the power transmitting device to output the target output power based in part on a heat limit. The processing circuitry may further calculate an energy transfer efficiency to the power receiving unit, update an adjustment factor based on the calculated energy transfer efficiency, and apply the adjustment factor to the heat limit for a subsequent duration.
    Type: Application
    Filed: February 23, 2022
    Publication date: August 25, 2022
    Inventors: Andrew Thomas Fried, Douglas W. Brown, Charles M. Nowell, Robert J. Monson, Venkat R. Gaddam, Brett Otteson
  • Publication number: 20210399584
    Abstract: The disclosure describes techniques to provide antennae configured to harvest radio-frequency (RF) energy from the nearby environment to provide electrical energy to an electrically powered device. Antennae may be configured in different shapes, lengths, locations, and materials to efficiently collect RF energy to be converted to electrical power. In some examples, RF energy may be harvested from existing sources, such as FM radio transmissions, communication transmissions such as Wi-Fi and BLUETOOTH, and similar existing sources. In other examples, antennae may be configured to collect energy from a source specifically designated to recharge the device. In some examples, the harvested RF energy may be sufficient to power the device. In other examples, the harvested RF energy may provide enough power to reduce the amount of recharging required by other means, such as by inductive recharging.
    Type: Application
    Filed: June 17, 2021
    Publication date: December 23, 2021
    Inventors: Robert J. Monson, Andrew Thomas Fried, Bruce T. Peacock
  • Publication number: 20210393968
    Abstract: This disclosure describes devices, systems, and techniques for recharging power sources using RF energy received by one or more antennae. In one example, an implantable medical device includes a rechargeable power supply and an antenna configured to receive radio frequency (RF) energy having one or more frequencies within at least one of a first range from 1 MHz to 20 MHz or a second range from 100 MHz to 700 MHz. The implantable medical device may also include charging circuitry configured to convert the RF energy to a direct current (DC) power and charge the rechargeable power supply with the DC power.
    Type: Application
    Filed: June 17, 2021
    Publication date: December 23, 2021
    Inventors: Robert J. Monson, Andrew T. Fried, Jeffrey P. Bodner, Jonathon E. Giftakis, Venkat R. Gaddam, Jacob P. Komarek
  • Patent number: 9921003
    Abstract: A wickless heat pipe including a first tube and a second tube. The first tube may form a first shape extending longitudinally in a first direction. The second tube may form a second shape extending longitudinally in a second direction different from the first direction. The first tube and the second tube intersect at at least one location. The two tubes may intersect at a right angle or an oblique angle. The first and second tube may intersect at a plurality of locations. The tubes may be formed from a metal plate used as a thermal ground plane.
    Type: Grant
    Filed: January 18, 2013
    Date of Patent: March 20, 2018
    Assignee: Lockheed Martin Corporation
    Inventors: Robert J. Monson, Brian Van Lear
  • Patent number: 9913368
    Abstract: Articles and related methods, the article having an enclosed area at least partially surrounded by a visible light-transmissive protective film comprising a first visible light-transmissive flexible film, a second visible light-transmissive flexible film, and a visible light-transmissive patterned conductive layer interposed between the first visible light-transmissive flexible film and the second visible light-transmissive flexible film, the visible light-transmissive conductive layer comprising a dispersion of metal nanowires within a polymeric matrix having an average pore size among metal nanowires that is impenetrable by electromagnetic radiation having a wavelength greater than 1 mm.
    Type: Grant
    Filed: January 18, 2016
    Date of Patent: March 6, 2018
    Assignee: Carestream Health, Inc.
    Inventors: Robert J. Monson, Andrew T. Fried
  • Publication number: 20160219694
    Abstract: Articles and related methods, the article having an enclosed area at least partially surrounded by a visible light-transmissive protective film comprising a first visible light-transmissive flexible film, a second visible light-transmissive flexible film, and a visible light-transmissive patterned conductive layer interposed between the first visible light-transmissive flexible film and the second visible light-transmissive flexible film, the visible light-transmissive conductive layer comprising a dispersion of metal nanowires within a polymeric matrix having an average pore size among metal nanowires that is impenetrable by electromagnetic radiation having a wavelength greater than 1 mm.
    Type: Application
    Filed: January 18, 2016
    Publication date: July 28, 2016
    Inventors: Robert J. Monson, Andrew T. Fried
  • Publication number: 20150305166
    Abstract: A method of patterning an unpatterned transparent conductive film, the unpatterned transparent conductive film comprising: a transparent substrate, a first conductive layer disposed on a first surface of the transparent substrate, and a second conductive layer disposed on a second surface of the transparent substrate, the first and second surfaces being disposed on two opposing sides of the unpatterned transparent conductive film, the first conductive layer comprising a first set of metal nanostructures, and the second conductive layer comprising a second set of metal nanostructures, the method comprising irradiating the first conductive layer with at least one first laser to form a patterned transparent conductive film, where the irradiation of the first conductive layer patterns the first conductive layer with a first pattern without also patterning the second conductive layer with the first pattern, and also where the unpatterned transparent conductive film and the patterned transparent conductive film bot
    Type: Application
    Filed: March 25, 2015
    Publication date: October 22, 2015
    Inventors: Andrew T. Fried, Jeffrey P. Treptau, Michael G. Steward, Eric L. Granstrom, Robert J. Monson, Kiarash Vakhshouri
  • Publication number: 20150199048
    Abstract: A touch panel module including a flexible transparent substrate, a transparent conductive film disposed on a first surface of the flexible transparent substrate, a conductive paste disposed on a first portion of the transparent conductive film, an optically clear adhesive disposed on a first and second portion of the conductive paste and a second portion of the transparent conductive film, and a cover lens disposed on the optically clear adhesive, where a third portion of the transparent conductive film and a third portion of the conductive paste are not covered by the optically clear adhesive. A touch panel including such a touch panel module, where the touch panel does not include an anisotropic conductive film.
    Type: Application
    Filed: December 12, 2014
    Publication date: July 16, 2015
    Inventors: Robert J. Monson, Robert R. Brearey, Andrew T. Fried, Joel T. Abrahamson, Steven W. Tanamachi
  • Publication number: 20150129174
    Abstract: Some embodiments of the invention provide a heat plate system that includes a closed vessel having at least one flexible surface. The flexible surface allows the vessel to come into intimate contact with heat-generating components (e.g., integrated circuits) residing at varying heights above the floor of a module (e.g., an avionics module). In some embodiments, the material may allow the heat plate to expand in response to absorbing heat, so that it may mold itself around the contours of different heat-generating components, increasing the surface area contact between the heat plate and the components, and increasing the heat plate's ability to conduct heat away from the components.
    Type: Application
    Filed: November 11, 2013
    Publication date: May 14, 2015
    Inventors: Robert J. Monson, Kent Katterheinrich, Yung-Cheng Lee
  • Publication number: 20150122531
    Abstract: An article comprising a conductive film comprising conductive structures, and a first resistive element patterned into a first portion of the conductive film. In at least some cases, the conductive structures may comprise nanostructures, such as, for example, nanowires. Silver nanowires are exemplary conductive structures. In some useful applications, the first resistive element may be part of a circuit, such as, for example, a Wheatstone bridge.
    Type: Application
    Filed: October 1, 2014
    Publication date: May 7, 2015
    Inventors: Robert J. Monson, Andrew T. Fried