Patents by Inventor Robert J. Nehls

Robert J. Nehls has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210299444
    Abstract: Techniques and systems for monitoring cardiac arrhythmias and delivering electrical stimulation therapy using a subcutaneous implantable cardioverter defibrillator (SICD) and a leadless pacing device (LPD) are described. For example, the SICD may detect a tachyarrhythmia within a first electrical signal from a heart and determine, based on the tachyarrhythmia, to deliver anti-tachyarrhythmia shock therapy to the patient to treat the detected arrhythmia. The LPD may receive communication from the SICD requesting the LPD deliver anti-tachycardia pacing to the heart and determine, based on a second electrical signal from the heart sensed by the LPD, whether to deliver anti-tachycardia pacing (ATP) to the heart. In this manner, the SICD and LPD may communicate to coordinate ATP and/or cardioversion/defibrillation therapy. In another example, the LPD may be configured to deliver post-shock pacing after detecting delivery of anti-tachyarrhythmia shock therapy.
    Type: Application
    Filed: June 11, 2021
    Publication date: September 30, 2021
    Inventors: Saul E. Greenhut, Robert J. Nehls, Walter H. Olson, Xusheng Zhang, Wade M. Demmer, Troy E. Jackson, James D. Reinke
  • Patent number: 11033743
    Abstract: Techniques and systems for monitoring cardiac arrhythmias and delivering electrical stimulation therapy using a subcutaneous implantable cardioverter defibrillator (SICD) and a leadless pacing device (LPD) are described. For example, the SICD may detect a tachyarrhythmia within a first electrical signal from a heart and determine, based on the tachyarrhythmia, to deliver anti-tachyarrhythmia shock therapy to the patient to treat the detected arrhythmia. The LPD may receive communication from the SICD requesting the LPD deliver anti-tachycardia pacing to the heart and determine, based on a second electrical signal from the heart sensed by the LPD, whether to deliver anti-tachycardia pacing (ATP) to the heart. In this manner, the SICD and LPD may communicate to coordinate ATP and/or cardioversion/defibrillation therapy. In another example, the LPD may be configured to deliver post-shock pacing after detecting delivery of anti-tachyarrhythmia shock therapy.
    Type: Grant
    Filed: April 22, 2019
    Date of Patent: June 15, 2021
    Assignee: MEDTRONIC, INC. (CVG)
    Inventors: Saul E. Greenhut, Robert J. Nehls, Walter H. Olson, Xusheng Zhang, Wade M. Demmer, Troy E. Jackson, James D. Reinke
  • Publication number: 20190247673
    Abstract: Techniques and systems for monitoring cardiac arrhythmias and delivering electrical stimulation therapy using a subcutaneous implantable cardioverter defibrillator (SICD) and a leadless pacing device (LPD) are described. For example, the SICD may detect a tachyarrhythmia within a first electrical signal from a heart and determine, based on the tachyarrhythmia, to deliver anti-tachyarrhythmia shock therapy to the patient to treat the detected arrhythmia. The LPD may receive communication from the SICD requesting the LPD deliver anti-tachycardia pacing to the heart and determine, based on a second electrical signal from the heart sensed by the LPD, whether to deliver anti-tachycardia pacing (ATP) to the heart. In this manner, the SICD and LPD may communicate to coordinate ATP and/or cardioversion/defibrillation therapy. In another example, the LPD may be configured to deliver post-shock pacing after detecting delivery of anti-tachyarrhythmia shock therapy.
    Type: Application
    Filed: April 22, 2019
    Publication date: August 15, 2019
    Inventors: Saul E. GREENHUT, Robert J. NEHLS, Walter H. OLSON, Xusheng ZHANG, Wade M. DEMMER, Troy E. JACKSON, James D. REINKE
  • Patent number: 10265534
    Abstract: Techniques and systems for monitoring cardiac arrhythmias and delivering electrical stimulation therapy using a subcutaneous implantable cardioverter defibrillator (SICD) and a leadless pacing device (LPD) are described. For example, the SICD may detect a tachyarrhythmia within a first electrical signal from a heart and determine, based on the tachyarrhythmia, to deliver anti-tachyarrhythmia shock therapy to the patient to treat the detected arrhythmia. The LPD may receive communication from the SICD requesting the LPD deliver anti-tachycardia pacing to the heart and determine, based on a second electrical signal from the heart sensed by the LPD, whether to deliver anti-tachycardia pacing (ATP) to the heart. In this manner, the SICD and LPD may communicate to coordinate ATP and/or cardioversion/defibrillation therapy. In another example, the LPD may be configured to deliver post-shock pacing after detecting delivery of anti-tachyarrhythmia shock therapy.
    Type: Grant
    Filed: October 26, 2016
    Date of Patent: April 23, 2019
    Assignee: Medtronic, Inc.
    Inventors: Saul E. Greenhut, Robert J. Nehls, Walter H. Olson, Xusheng Zhang, Wade M. Demmer, Troy E. Jackson, James D. Reinke
  • Patent number: 9622778
    Abstract: Exemplary embodiments provide subcutaneous implantation tools and methods of implanting a subcutaneous micro-device using the same. Exemplary embodiments provide subcutaneous implantation tools including a syringe body, a dissection body, and a delivery assembly. Additional exemplary embodiments provide methods of implanting a subcutaneous micro-device, including inserting the dissection body of the tool described by the exemplary embodiments into an implantation site, where the dissection body includes a micro-device, and delivering the micro-device.
    Type: Grant
    Filed: October 14, 2008
    Date of Patent: April 18, 2017
    Assignee: Medtronic, Inc.
    Inventors: Eric J. Wengreen, John E. Lovins, Randy S. Roles, Robert J. Nehls
  • Publication number: 20170043174
    Abstract: Techniques and systems for monitoring cardiac arrhythmias and delivering electrical stimulation therapy using a subcutaneous implantable cardioverter defibrillator (SICD) and a leadless pacing device (LPD) are described. For example, the SICD may detect a tachyarrhythmia within a first electrical signal from a heart and determine, based on the tachyarrhythmia, to deliver anti-tachyarrhythmia shock therapy to the patient to treat the detected arrhythmia. The LPD may receive communication from the SICD requesting the LPD deliver anti-tachycardia pacing to the heart and determine, based on a second electrical signal from the heart sensed by the LPD, whether to deliver anti-tachycardia pacing (ATP) to the heart. In this manner, the SICD and LPD may communicate to coordinate ATP and/or cardioversion/defibrillation therapy. In another example, the LPD may be configured to deliver post-shock pacing after detecting delivery of anti-tachyarrhythmia shock therapy.
    Type: Application
    Filed: October 26, 2016
    Publication date: February 16, 2017
    Inventors: Saul E. GREENHUT, Robert J. NEHLS, Walter H. OLSON, Xusheng ZHANG, Wade M. DEMMER, Troy E. JACKSON, James D. REINKE
  • Patent number: 9492677
    Abstract: Techniques and systems for monitoring cardiac arrhythmias and delivering electrical stimulation therapy using a subcutaneous implantable cardioverter defibrillator (SICD) and a leadless pacing device (LPD) are described. For example, the SICD may detect a tachyarrhythmia within a first electrical signal from a heart and determine, based on the tachyarrhythmia, to deliver anti-tachyarrhythmia shock therapy to the patient to treat the detected arrhythmia. The LPD may receive communication from the SICD requesting the LPD deliver anti-tachycardia pacing to the heart and determine, based on a second electrical signal from the heart sensed by the LPD, whether to deliver anti-tachycardia pacing (ATP) to the heart. In this manner, the SICD and LPD may communicate to coordinate ATP and/or cardioversion/defibrillation therapy. In another example, the LPD may be configured to deliver post-shock pacing after detecting delivery of anti-tachyarrhythmia shock therapy.
    Type: Grant
    Filed: July 1, 2015
    Date of Patent: November 15, 2016
    Assignee: Medtronic, Inc.
    Inventors: Saul E. Greenhut, Robert J. Nehls, Walter H. Olson, Xusheng Zhang, Wade M. Demmer, Troy E. Jackson, James D. Reinke
  • Publication number: 20150297905
    Abstract: Techniques and systems for monitoring cardiac arrhythmias and delivering electrical stimulation therapy using a subcutaneous implantable cardioverter defibrillator (SICD) and a leadless pacing device (LPD) are described. For example, the SICD may detect a tachyarrhythmia within a first electrical signal from a heart and determine, based on the tachyarrhythmia, to deliver anti-tachyarrhythmia shock therapy to the patient to treat the detected arrhythmia. The LPD may receive communication from the SICD requesting the LPD deliver anti-tachycardia pacing to the heart and determine, based on a second electrical signal from the heart sensed by the LPD, whether to deliver anti-tachycardia pacing (ATP) to the heart. In this manner, the SICD and LPD may communicate to coordinate ATP and/or cardioversion/defibrillation therapy. In another example, the LPD may be configured to deliver post-shock pacing after detecting delivery of anti-tachyarrhythmia shock therapy.
    Type: Application
    Filed: July 1, 2015
    Publication date: October 22, 2015
    Inventors: Saul E. GREENHUT, Robert J. NEHLS, Walter H. OLSON, Xusheng ZHANG, Wade M. DEMMER, Troy E. JACKSON, James D. REINKE
  • Patent number: 9072914
    Abstract: Techniques and systems for monitoring cardiac arrhythmias and delivering electrical stimulation therapy using a subcutaneous implantable cardioverter defibrillator (SICD) and a leadless pacing device (LPD) are described. For example, the SICD may detect a tachyarrhythmia within a first electrical signal from a heart and determine, based on the tachyarrhythmia, to deliver anti-tachyarrhythmia shock therapy to the patient to treat the detected arrhythmia. The LPD may receive communication from the SICD requesting the LPD deliver anti-tachycardia pacing to the heart and determine, based on a second electrical signal from the heart sensed by the LPD, whether to deliver anti-tachycardia pacing (ATP) to the heart. In this manner, the SICD and LPD may communicate to coordinate ATP and/or cardioversion/defibrillation therapy. In another example, the LPD may be configured to deliver post-shock pacing after detecting delivery of anti-tachyarrhythmia shock therapy.
    Type: Grant
    Filed: February 12, 2014
    Date of Patent: July 7, 2015
    Assignee: Medtronic, Inc.
    Inventors: Saul E Greenhut, Robert J Nehls, Walter H Olson, Xusheng Zhang, Wade M Demmer, Troy E Jackson, James D Reinke
  • Publication number: 20140214104
    Abstract: Techniques and systems for monitoring cardiac arrhythmias and delivering electrical stimulation therapy using a subcutaneous implantable cardioverter defibrillator (SICD) and a leadless pacing device (LPD) are described. For example, the SICD may detect a tachyarrhythmia within a first electrical signal from a heart and determine, based on the tachyarrhythmia, to deliver anti-tachyarrhythmia shock therapy to the patient to treat the detected arrhythmia. The LPD may receive communication from the SICD requesting the LPD deliver anti-tachycardia pacing to the heart and determine, based on a second electrical signal from the heart sensed by the LPD, whether to deliver anti-tachycardia pacing (ATP) to the heart. In this manner, the SICD and LPD may communicate to coordinate ATP and/or cardioversion/defibrillation therapy. In another example, the LPD may be configured to deliver post-shock pacing after detecting delivery of anti-tachyarrhythmia shock therapy.
    Type: Application
    Filed: February 12, 2014
    Publication date: July 31, 2014
    Inventors: Saul E Greenhut, Robert J Nehls, Walter H Olson, Xusheng Zhang, Wade M Demmer, Troy E Jackson, James D Reinke
  • Patent number: 8744572
    Abstract: Techniques and systems for monitoring cardiac arrhythmias and delivering electrical stimulation therapy using a subcutaneous implantable cardioverter defibrillator (SICD) and a leadless pacing device (LPD) are described. For example, the SICD may detect a tachyarrhythmia within a first electrical signal from a heart and determine, based on the tachyarrhythmia, to deliver anti-tachyarrhythmia shock therapy to the patient to treat the detected arrhythmia. The LPD may receive communication from the SICD requesting the LPD deliver anti-tachycardia pacing to the heart and determine, based on a second electrical signal from the heart sensed by the LPD, whether to deliver anti-tachycardia pacing (ATP) to the heart. In this manner, the SICD and LPD may communicate to coordinate ATP and/or cardioversion/defibrillation therapy. In another example, the LPD may be configured to deliver post-shock pacing after detecting delivery of anti-tachyarrhythmia shock therapy.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: June 3, 2014
    Assignee: Medronic, Inc.
    Inventors: Saul E. Greenhut, Robert J. Nehls, Walter H. Olson, Xusheng Zhang, Wade M. Demmer, Troy E. Jackson
  • Patent number: 7996084
    Abstract: An implantable medical device (IMD) performs periodic testing of a patient to determine ischemia threshold information. At selected times while the patient is at rest, the IMD increases the pacing rate over time until it receives feedback either from the patient or from an ischemia sensor. The IMD determines the threshold based upon the pacing rate at the time when the feedback was received. The threshold information can be used to adjust the upper pacing rate that can be used during rate adaptive pacing, to determine the effects of drug therapy, and to provide a general indication of the state of coronary artery disease in the patient. The periodic increase of pacing rate to the ischemic zone also provides a preconditioning of the myocardium to allow the patient greater exercise benefit without angina.
    Type: Grant
    Filed: April 19, 2006
    Date of Patent: August 9, 2011
    Assignee: Medtronic, Inc.
    Inventors: Lee Stylos, Todd J. Sheldon, Steven N. Lu, William J. Combs, Robert J. Nehls
  • Patent number: 7848808
    Abstract: An implantable medical device system and method in which the implantable device is adapted to operate in a minimum ventricular pacing mode. The device delivers cardiac pacing pulses in a first pacing mode during a normal mode of operation and upon detecting myocardial ischemia alters the first pacing mode in response to the myocardial ischemia detection.
    Type: Grant
    Filed: February 28, 2006
    Date of Patent: December 7, 2010
    Assignee: Medtronic, Inc.
    Inventors: Todd J. Sheldon, William J. Combs, Lee Stylos, Steven N. Lu, Robert J. Nehls
  • Publication number: 20100094252
    Abstract: Exemplary embodiments provide subcutaneous implantation tools and methods of implanting a subcutaneous micro-device using the same. Exemplary embodiments provide subcutaneous implantation tools including a syringe body, a dissection body, and a delivery assembly. Additional exemplary embodiments provide methods of implanting a subcutaneous micro-device, including inserting the dissection body of the tool described by the exemplary embodiments into an implantation site, where the dissection body includes a micro-device, and delivering the micro-device.
    Type: Application
    Filed: October 14, 2008
    Publication date: April 15, 2010
    Applicant: Medtronic, Inc.
    Inventors: Eric J. Wengreen, John E. Lovins, Randy S. Roles, Robert J. Nehls
  • Patent number: 7092759
    Abstract: The present invention relates to monitoring septal wall motion of the atrial and/or ventricular chambers of a heart for optimizing cardiac pacing intervals based on signals derived from the monitored wall motion. At least one lead of medical device is equipped with a motion sensor adapted to couple to septal tissue. The device receives and may post-process (e.g., suitably filter, rectify and/or integrate) motion signals to determine acceleration, velocity and/or displacement. During pacing interval optimization the wall motion is measured for those pacing intervals and the pacing interval setting(s) that produce minimal wall motion for chronic therapy delivery. In addition, methods for periodically determining whether to cease or resume delivery of a bi-ventricular pacing therapy to a patient that may have experienced beneficial reverse remodeling of the heart.
    Type: Grant
    Filed: July 30, 2003
    Date of Patent: August 15, 2006
    Assignee: Medtronic, Inc.
    Inventors: Robert J. Nehls, Todd J. Sheldon