Patents by Inventor Robert J. P. Lander

Robert J. P. Lander has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9061889
    Abstract: A MEMS microphone has a support surface, a microphone substrate over the support surface and an assembly of a microphone membrane and spaced back electrode supported over the substrate. The substrate has an opening beneath the assembly. The interface between the support surface and the substrate comprises a plurality of discrete spaced portions. This structure provides some resilience to differential expansion and contraction that can arise during processing. The support surface can then be a different material to the substrate, for example a PCB laminate as the support surface and silicon as the substrate.
    Type: Grant
    Filed: August 17, 2011
    Date of Patent: June 23, 2015
    Assignee: NXP, B.V.
    Inventor: Robert J. P. Lander
  • Patent number: 8669822
    Abstract: A method of manufacturing a MEMS resonator formed from a first material having a first Young's modulus and a first temperature coefficient of the first Young's modulus, and a second material having a second Young's modulus and a second temperature coefficient of the second Young's modulus, a sign of the second temperature coefficient being opposite to a sign of the first temperature coefficient at least within operating conditions of the resonator. The method includes the steps of forming the resonator from the first material; applying the second material to the resonator; and controlling the quantity of the second material applied to the resonator by the geometry of the resonator.
    Type: Grant
    Filed: June 21, 2011
    Date of Patent: March 11, 2014
    Assignee: NXP, B.V.
    Inventor: Robert J. P. Lander
  • Patent number: 8216894
    Abstract: A finFET structure is made by forming a fin (14), followed by a gate stack of gate dielectric (16), metal gate layer (18), polysilicon layer (20) and silicon-germanium layer (22). The gate stack is then patterned, and source and drain implants formed in the fin (14) away from the gate. The silicon germanium layer (22) is selectively etched away, a metal deposited over the gate, and silicidation carried out to convert the full thickness of the polysilicon layer (20) at the top of the fin. A region of unreacted polysilicon (38) may be left at the base of the fin and across the substrate.
    Type: Grant
    Filed: June 10, 2009
    Date of Patent: July 10, 2012
    Assignee: NXP B.V.
    Inventor: Robert J. P. Lander
  • Publication number: 20120045078
    Abstract: A MEMS microphone has a support surface, a microphone substrate over the support surface and an assembly of a microphone membrane and spaced back electrode supported over the substrate. The substrate has an opening beneath the assembly. The interface between the support surface and the substrate comprises a plurality of discrete spaced portions. This structure provides some resilience to differential expansion and contraction that can arise during processing. The support surface can then be a different material to the substrate, for example a PCB laminate as the support surface and silicon as the substrate.
    Type: Application
    Filed: August 17, 2011
    Publication date: February 23, 2012
    Applicant: NXP B.V.
    Inventor: Robert J. P. Lander
  • Publication number: 20120001700
    Abstract: A method of manufacturing a MEMS resonator formed from a first material having a first Young's modulus and a first temperature coefficient of the first Young's modulus, and a second material having a second Young's modulus and a second temperature coefficient of the second Young's modulus, a sign of the second temperature coefficient being opposite to a sign of the first temperature coefficient at least within operating conditions of the resonator. The method includes the steps of forming the resonator from the first material; applying the second material to the resonator; and controlling the quantity of the second material applied to the resonator by the geometry of the resonator.
    Type: Application
    Filed: June 21, 2011
    Publication date: January 5, 2012
    Applicant: NXP B.V.
    Inventor: Robert J. P. Lander
  • Publication number: 20110163393
    Abstract: A method of manufacturing a semiconductor device on a substrate (10) is disclosed. The method comprises providing the substrate (10) including a body region (12) protruding from said substrate (10), the body region (12) being covered by a gate electrode material (16, 56) forming a first gate region (18) on a first side of the body region (12) and a second gate region (20) on a second side of the body region (12), the gate material (16, 56) being separated from the body region (12) by a dielectric layer (14); and introducing a dopant (22, 58) of a first conductivity type into the gate electrode material (16, 56) such that the first gate region (18, 20) is exposed to the dopant while the second gate region (20, 18) is substantially sheltered from the dopant by the protruding body region (12). This allows for versatile tuning of the work function of a single gate to be formed. An integrated circuit comprising such a semiconductor device is also disclosed.
    Type: Application
    Filed: May 20, 2009
    Publication date: July 7, 2011
    Applicant: NXP B.V.
    Inventor: Robert J. P. Lander
  • Publication number: 20110089493
    Abstract: A finFET structure is made by forming a fin (14), followed by a gate stack of gate dielectric (16), metal gate layer (18), polysilicon layer (20) and silicon-germanium layer (22). The gate stack is then patterned, and source and drain implants formed in the fin (14) away from the gate. The silicon germanium layer (22) is selectively etched away, a metal deposited over the gate, and silicidation carried out to convert the full thickness of the polysilicon layer (20) at the top of the fin. A region of unreacted polysilicon (38) may be left at the base of the fin and across the substrate.
    Type: Application
    Filed: June 10, 2009
    Publication date: April 21, 2011
    Applicant: NXP B.V.
    Inventor: Robert J. P. Lander