Patents by Inventor Robert J. Schultz

Robert J. Schultz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200278554
    Abstract: A frame supports a display apparatus against the head of a viewer. A projector fitted within the frame generates a beam of image-bearing light. A light guide coupled to a forward section of the frame has a waveguide, an in-coupling diffractive optic formed on the waveguide for directing image-bearing light beams into the waveguide, a turning optic formed on the waveguide for expanding the respective image-bearing light beams from the in-coupling diffractive optic in a first dimension, and an out-coupling diffractive optic formed on the waveguide for expanding the respective image-bearing light beams in a second dimension orthogonal to the first dimension and forming a virtual image within a viewer eyebox. A mount supports the light guide in front of the viewer and provides a hinge for angular adjustment of the waveguide with respect to the projector.
    Type: Application
    Filed: January 5, 2017
    Publication date: September 3, 2020
    Inventors: Robert J. Schultz, Paul J. Travers, Tyler W. Porter
  • Publication number: 20200278543
    Abstract: An imaging light guide has waveguide for conveying image-bearing light beams from an image source to an eyebox within which a virtual image can be viewed. First and second in-coupling diffractive optics direct first and second sets of the image-bearing light beams into the waveguide along different first and second paths. First and second turning diffractive optics disposed along the respective paths expand the image-bearing light beams of the first and second sets in a first dimension and direct the expanded image-bearing light beams of the first and second sets to first and second out-coupling diffractive optics. The first and second out-coupling diffractive optics further expand the image-bearing light beams of the two sets in a second dimension and direct the further expanded image-bearing light beams of the two sets from the waveguide toward the eyebox.
    Type: Application
    Filed: January 5, 2017
    Publication date: September 3, 2020
    Inventors: Robert J. Schultz, Paul J. Travers
  • Publication number: 20200278555
    Abstract: A wearable display apparatus has a support that mounts the display apparatus against the head of a viewer; a ball joint that is fitted within the support and coupled to a clamp that extends from the support; a slide that is translatable within the clamp in a first direction and that holds a display module for forming the display image; and a display coupled to the display module and rotatable in a first arc about a vertical axis that extends in a second direction that is orthogonal to the first direction and further rotatable in a second arc about a horizontal axis that is substantially orthogonal to the vertical axis.
    Type: Application
    Filed: January 5, 2017
    Publication date: September 3, 2020
    Inventors: Tyler W. Porter, Russell D. Page, Paul J. Travers, Robert J. Schultz
  • Publication number: 20200278498
    Abstract: An imaging light guide for conveying a virtual image has a waveguide with first and second color channels for directing light of a first and second wavelength range toward a viewer eyebox. Each color channel has an in-coupling diffractive optic to diffract an image-bearing light beam into the waveguide and a reflector array having a partially reflective surface and a dichroic filter surface in parallel. Reflector array surfaces expand the respective light beam of the channel from the in-coupling diffractive optic in a first dimension and direct the expanded light beams toward an out-coupling diffractive optic. The dichroic surface reflects light of the color channel toward the reflective surface and transmits other light out of the waveguide. The out-coupling diffractive optic expands the image-bearing light beam orthogonally to the first dimension and directs the further expanded light beam toward the viewer eyebox.
    Type: Application
    Filed: January 5, 2017
    Publication date: September 3, 2020
    Inventors: Robert J. Schultz, Paul J. Travers
  • Patent number: 10747001
    Abstract: An imaging light guide has a waveguide formed as a coated substrate having first and second surface coatings. A first in-coupling diffractive optic on the first coating directs diffracted light of a first wavelength range into the waveguide along a first direction. A second in-coupling diffractive optic on the second coating directs diffracted light of a second wavelength range into the waveguide along a second different direction. A first dichroic patch between the first surface of the substrate and the first surface coating for (a) transmitting the first wavelength range, (b) transmitting the second wavelength range through a range of incidence angles, and (c) reflecting the second wavelength range through a higher range of incidence angles. A second dichroic patch between the second surface of the substrate and the second surface coating for transmitting the second wavelength range and reflecting the first wavelength range.
    Type: Grant
    Filed: January 5, 2017
    Date of Patent: August 18, 2020
    Assignee: Vuzix Corporation
    Inventors: Robert J. Schultz, Paul J. Travers
  • Publication number: 20200233213
    Abstract: An imaging apparatus for stereoscopic viewing has a frame that seats against the head of a viewer. A left-eye imaging apparatus and a right-eye imaging apparatus are supported by the frame. The frame is reshapeable in a manner that changes a relative alignment of the left-eye imaging apparatus and the right-eye imaging apparatus to accommodate different viewer head anatomies. An adjustment mechanism responsive to the reshaping of the frame restores relative alignment of the left-eye imaging apparatus and the right-eye imaging apparatus for conveying stereoscopic virtual images to the viewer.
    Type: Application
    Filed: July 17, 2018
    Publication date: July 23, 2020
    Inventors: Tyler W. Porter, Robert J. Schultz, Robert W. Gray
  • Publication number: 20200209630
    Abstract: An image light guide for conveying a virtual image has a waveguide that conveys image-bearing light, formed as a flat plate having an in-coupling diffractive optic with a first grating vector diffracting an image-bearing light beam into the waveguide and directing diffracted light. An out-coupling diffractive optic is formed as a plurality of overlapping diffraction gratings including a first grating pattern having first grating vector k1 and a second grating pattern having a second grating vector k2 for expanding and ejecting the expanded image bearing beams from the waveguide into an expanded eyebox within which the virtual image can be seen.
    Type: Application
    Filed: June 12, 2018
    Publication date: July 2, 2020
    Inventors: Robert J. Schultz, Paul J. Travers
  • Publication number: 20200088932
    Abstract: An imaging light guide for conveying a virtual image has a waveguide that conveys image-bearing light, formed as a flat plate having a front and a back surface and having an in-coupling diffractive optic on the front surface with a first grating vector diffracting an image-bearing light beam into the waveguide and directing diffracted light. An out-coupling diffractive optic is formed on the front or back surface as a diffractive array and with a first subset of diffractive elements, each having a second grating vector k2 offset from the first grating vector by about +60 degrees and a second subset of diffractive elements, each having a third grating vector k3 offset from the first grating vector by about ?60 degrees. Each diffractive element of the first subset is immediately adjacent to at least one diffractive element of the second subset and the diffractive elements are mutually non-overlapping.
    Type: Application
    Filed: December 13, 2017
    Publication date: March 19, 2020
    Inventors: Robert J. Schultz, Paul J. Travers
  • Publication number: 20200081255
    Abstract: A beam separator has a composite prism having an external input face and an external output face co-planar to the input face. At least one polarization beam splitter surface is encased within the composite prism and has an edge that defines a boundary between the external input face and the external output face. A first reflective surface is disposed to redirect, along a direction orthogonal to the input face, light of a first polarization that reflects from the at least one polarization beam splitter.
    Type: Application
    Filed: December 13, 2017
    Publication date: March 12, 2020
    Inventors: Robert J. Schultz, Paul J. Travers
  • Publication number: 20190361242
    Abstract: A head-mounted imaging apparatus includes a frame that houses a left-eye and a right-eye imaging apparatus. Each imaging apparatus forms a virtual image to an eye of an observer and includes a projector, a planar waveguide, and an optical coupler. The projector is supported by a temple member of the frame and emits a central projected light beam along a projection axis. The planar waveguide accepts the projected light beam through an input aperture and forms an expanded light beam that is output from an output aperture and directed toward the observer's eye. The optical coupler receives the central projected light beam along a first axis that is at an obtuse angle with respect to the waveguide surface, and the optical coupler redirects the central projected light beam along a second axis that is at an acute angle with respect to the waveguide surface.
    Type: Application
    Filed: July 11, 2019
    Publication date: November 28, 2019
    Inventor: Robert J. Schultz
  • Publication number: 20190310482
    Abstract: An imaging apparatus has a projector apparatus that projects light for forming a first image and a second image. A first pupil expander lies in the path of projected light and is configured to direct light to a viewer to form a first virtual image at infinity focus. A second pupil expander lies in the path of the projected light and is configured to direct light through a first lens and to the viewer to form a second virtual image near a focal plane of the first lens. A second lens is disposed to condition light from a visual scene lying beyond the second pupil expander.
    Type: Application
    Filed: December 13, 2017
    Publication date: October 10, 2019
    Inventors: Robert J. Schultz, Paul J. Travers
  • Patent number: 10416458
    Abstract: A head-mounted virtual image display apparatus has a projector that directs image-bearing light beams along a projection axis. A planar waveguide is configured to receive the image-bearing light beams through an input aperture and to form expanded image-bearing light beams that are output from an output aperture of the waveguide. An optical coupler is configured to receive the image-bearing light beams along the projection axis, to reorient the projection axis with respect to the waveguide, to rotate the image-bearing light beams about the projection axis, and to direct the rotated image-bearing beams along the reoriented projection axis through the input aperture of the waveguide.
    Type: Grant
    Filed: July 1, 2017
    Date of Patent: September 17, 2019
    Assignee: Vuzix Corporation
    Inventors: Robert J. Schultz, Paul J. Travers
  • Patent number: 10359632
    Abstract: A head-mounted imaging apparatus includes a frame that houses a left-eye and a right-eye imaging apparatus. Each imaging apparatus forms a virtual image to an eye of an observer and includes a projector, a planar waveguide, and an optical coupler. The projector is supported by a temple member of the frame and emits a central projected light beam along a projection axis. The planar waveguide accepts the projected light beam through an input aperture and forms an expanded light beam that is output from an output aperture and directed toward the observer's eye. The optical coupler receives the central projected light beam along a first axis that is at an obtuse angle with respect to the waveguide surface, and the optical coupler redirects the central projected light beam along a second axis that is at an acute angle with respect to the waveguide surface.
    Type: Grant
    Filed: January 6, 2016
    Date of Patent: July 23, 2019
    Assignee: Vuzix Corporation
    Inventor: Robert J. Schultz
  • Publication number: 20190212563
    Abstract: A head-mounted virtual image display apparatus has a projector that directs image-bearing light beams along a projection axis. A planar waveguide is configured to receive the image-bearing light beams through an input aperture and to form expanded image-bearing light beams that are output from an output aperture of the waveguide. An optical coupler is configured to receive the image-bearing light beams along the projection axis, to reorient the projection axis with respect to the waveguide, to rotate the image-bearing light beams about the projection axis, and to direct the rotated image-bearing beams along the reoriented projection axis through the input aperture of the waveguide.
    Type: Application
    Filed: July 1, 2017
    Publication date: July 11, 2019
    Applicant: Vuzix Corporation
    Inventors: Robert J. SCHULTZ, Paul J. TRAVERS
  • Publication number: 20190011708
    Abstract: An imaging light guide has a waveguide formed as a coated substrate having first and second surface coatings. A first in-coupling diffractive optic on the first coating directs diffracted light of a first wavelength range into the waveguide along a first direction. A second in-coupling diffractive optic on the second coating directs diffracted light of a second wavelength range into the waveguide along a second different direction. A first dichroic patch between the first surface of the substrate and the first surface coating for (a) transmitting the first wavelength range, (b) transmitting the second wavelength range through a range of incidence angles, and (c) reflecting the second wavelength range through a higher range of incidence angles. A second dichroic patch between the second surface of the substrate and the second surface coating for transmitting the second wavelength range and reflecting the first wavelength range.
    Type: Application
    Filed: January 5, 2017
    Publication date: January 10, 2019
    Inventors: Robert J. SCHULTZ, Paul J. TRAVERS
  • Patent number: 10007117
    Abstract: An imaging light guide has a waveguide and an in-coupling diffractive optic formed on the waveguide and disposed to direct image-bearing light beams into the waveguide. An array of two or more at least partially reflective surfaces are oriented in parallel and disposed to expand the image-bearing light beams from the in-coupling diffractive optic in a first dimension and to direct the expanded image-bearing light beams toward an out-coupling diffractive optic. The out-coupling diffractive optic is formed on the waveguide and disposed to expand the image-bearing light beams in a second dimension orthogonal to the first dimension and to direct the image-bearing light beams toward a viewer eyebox.
    Type: Grant
    Filed: September 10, 2015
    Date of Patent: June 26, 2018
    Assignee: Vuzix Corporation
    Inventors: Robert J. Schultz, Paul J. Travers
  • Publication number: 20180003977
    Abstract: A head-mounted imaging apparatus has a projector that is energizable to project image-bearing light and a light-conditioning element that directs and shapes the image-bearing light from the projector to form a real image plane. A lenslet array is positioned adjacent to the real image plane and optically disposed at substantially one focal length away from a curved mirror, wherein the surface of the curved mirror is substantially spherical. There is a beamsplitter in the path of light from the real image at the lenslet array and disposed to direct at least a portion of the light from the real image toward the curved mirror. The curved mirror directs light from the beamsplitter to form a virtual image for an observer who wears the head-mounted imaging apparatus.
    Type: Application
    Filed: January 6, 2016
    Publication date: January 4, 2018
    Inventors: Jose M. Mir, Robert J. Schultz
  • Publication number: 20170371160
    Abstract: A head-mounted imaging apparatus includes a frame that houses a left-eye and a right-eye imaging apparatus. Each imaging apparatus forms a virtual image to an eye of an observer and includes a projector, a planar waveguide, and an optical coupler. The projector is supported by a temple member of the frame and emits a central projected light beam along a projection axis. The planar waveguide accepts the projected light beam through an input aperture and forms an expanded light beam that is output from an output aperture and directed toward the observer's eye. The optical coupler receives the central projected light beam along a first axis that is at an obtuse angle with respect to the waveguide surface, and the optical coupler redirects the central projected light beam along a second axis that is at an acute angle with respect to the waveguide surface.
    Type: Application
    Filed: January 6, 2016
    Publication date: December 28, 2017
    Inventor: Robert J. Schultz
  • Publication number: 20170075119
    Abstract: An imaging light guide has a waveguide and an in-coupling diffractive optic formed on the waveguide and disposed to direct image-bearing light beams into the waveguide. An array of two or more at least partially reflective surfaces are oriented in parallel and disposed to expand the image-bearing light beams from the in-coupling diffractive optic in a first dimension and to direct the expanded image-bearing light beams toward an out-coupling diffractive optic. The out-coupling diffractive optic is formed on the waveguide and disposed to expand the image-bearing light beams in a second dimension orthogonal to the first dimension and to direct the image-bearing light beams toward a viewer eyebox.
    Type: Application
    Filed: September 10, 2015
    Publication date: March 16, 2017
    Inventors: Robert J. Schultz, Paul J. Travers
  • Patent number: 9400395
    Abstract: A near-eye display includes an image generator that generates angularly related beams over a range of angles for forming a virtual image and a waveguide that propagates the angularly related beams over a limited range of angles. An input aperture of the waveguide includes a plurality of controllable components that are selectively operable as diffractive optics for injecting subsets of the angularly related beams into the waveguide. An output aperture of the waveguide includes a plurality of controllable components that selectively operable as diffractive optics for ejecting corresponding subsets of the angularly related beams out of the waveguide toward an eyebox. A controller synchronizes operation of the controllable components of the output aperture with the propagation of different subsets of angularly related beams along the waveguide for ejecting the subsets of angularly related beams out of the waveguide for presenting the virtual image within the eyebox.
    Type: Grant
    Filed: August 29, 2012
    Date of Patent: July 26, 2016
    Assignee: Vuzix Corporation
    Inventors: Paul J. Travers, Robert J. Schultz