Patents by Inventor Robert J. Webster

Robert J. Webster has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11955207
    Abstract: The disclosure provides systems and methods for data analysis of experimental data. The analysis can include reference data that are not directly generated from the present experiment, which reference data may be values of the experimental parameters that were either provided by a user, computed by the system with input from a user, or computed by the system without using any input from a user. Another example of such reference data may be information about the instrument, such as the calibration method of the instrument.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: April 9, 2024
    Assignee: Emerald Cloud Lab, Inc.
    Inventors: Alex M. Yoshikawa, Anand V. Sastry, Asuka Ota, Ben C. Kline, Bradley M. Bond, Brian M. Frezza, Cameron R. Lamoureux, Catherine L. Hofler, Cheri Y. Li, Courtney E. Webster, Daniel J. Kleinbaum, George N. Stanley, George W. Fraser, Guillaume Robichaud, Hayley E. Buchman, James R. McKernan, Jonathan K. Leung, Paul R. Zurek, Robert M. Teed, Ruben E. Valas, Sean M. Fitzgerald, Sergio I. Villarreal, Shayna L. Hilburg, Shivani S. Baisiwala, Srikant Vaithilingam, Wyatt J. Woodson, Yang Choo, Yidan Y. Cong
  • Publication number: 20230371795
    Abstract: A system includes an endcap configured to be fitted on a distal end of an endoscope having a forward-looking camera and a forward-facing working port. The endcap includes a body configured to fit onto the distal end of the endoscope and a reflective surface supported by the body. The reflective surface is configured so that the forward-looking camera visualizes a workspace that is lateral of both the endcap and the distal end of the endoscope.
    Type: Application
    Filed: October 5, 2021
    Publication date: November 23, 2023
    Inventors: Joshua GAFFORD, Robert J. WEBSTER, III, Patrick L. ANDERSON, Scott WEBSTER
  • Publication number: 20230363843
    Abstract: A small diameter surgical tool implements an agonist-antagonist deflectable joint. The deflectable joint is an actuatable bendable structure that uses push-pull, agonist-antagonist action of a pair of nested tubes to actuate the joint. The tubes are designed to have non-central, offset neutral axes, and they are fixed together at locations distal to the deflectable joint, such as at their distal ends. Axial translations of the tubes relative to each other causes a push-pull, agonist-antagonist action between the tubes, which causes the deflectable joint to bend. In one implementation, a deflectable joint can be created in nested tubes by configuring radial portions of the tube sidewalls extending along the joint to have an axial region of reduced stiffness. As a result, axial agonist-antagonist motion between the tubes can cause bending of the deflectable joint.
    Type: Application
    Filed: July 25, 2023
    Publication date: November 16, 2023
    Inventors: Katherine E. Riojas, Robert J. Webster, Daniel Caleb Rucker, Kaitlin Oliver Butler, Ryan Ponten
  • Patent number: 11723738
    Abstract: A small diameter surgical tool implements an agonist-antagonist deflectable joint. The deflectable joint is an actuatable bendable structure that uses push-pull, agonist-antagonist action of a pair of nested tubes to actuate the joint. The tubes are designed to have non-central, offset neutral axes, and they are fixed together at locations distal to the deflectable joint, such as at their distal ends. Axial translations of the tubes relative to each other causes a push-pull, agonist-antagonist action between the tubes, which causes the deflectable joint to bend. In one implementation, a deflectable joint can be created in nested tubes by configuring radial portions of the tube sidewalls extending along the joint to have an axial region of reduced stiffness. As a result, axial agonist-antagonist motion between the tubes can cause bending of the deflectable joint.
    Type: Grant
    Filed: November 6, 2017
    Date of Patent: August 15, 2023
    Assignees: UNIVERSITY OF TENNESSEE RESEARCH FOUNDATION, VANDERBILT UNIVERSITY
    Inventors: Katherine E. Riojas, Robert J. Webster, Daniel Caleb Rucker, Kaitlin Oliver Butler, Ryan Ponten
  • Patent number: 11426197
    Abstract: A steerable surgical needle (10) includes an elongated needle shaft (12), a beveled tip portion (14), and a flexural element (16) that connects the needle shaft (12) with the tip portion (14) and permits the tip portion to deflect relative to the needle shaft. A method for steering the surgical needle (10) through tissue includes the steps of advancing the needle in the body tissue to induce tip flexure which causes the needle to follow a curved trajectory, and rotating the needle about its longitudinal axis in place, without advancement, to remove the tip flexure.
    Type: Grant
    Filed: October 30, 2019
    Date of Patent: August 30, 2022
    Assignee: VANDERBILT UNIVERSITY
    Inventors: Philip J. Swaney, Robert J. Webster, III
  • Publication number: 20220193412
    Abstract: A system and method for determining the location of an implant such as a cochlear implant relative to a structure of interest such as a tissue wall. The implant has an electrode array including a first electrode and a second electrode. The electrode array is insertable into an electrically-conductive volume relative to the inner wall of the scala tympani of the cochlea. A pulse generator generates a biphasic, constant-current pulse on the first and second electrodes. A controller measures the differential voltage across the pair of electrodes during the current pulse. The controller determines the proximity between the inner wall and the segment of the electrode array between the first and second electrodes based on the differential voltage between the first and second electrodes.
    Type: Application
    Filed: April 17, 2020
    Publication date: June 23, 2022
    Inventors: Trevor L. Bruns, Robert J. Webster
  • Patent number: 10912620
    Abstract: A snare tool manipulator system includes an elongated flexible device having a length and including a distally mounted end effector configured to perform a task. The flexible device is operable to manipulate the end effector in order to perform the task. The system also includes an elongated snare tool including a distally mounted snare device configured for grasping the flexible elongated member at a position along its length. The snare tool is operable robotically to manipulate the flexible device which in response manipulates the end effector.
    Type: Grant
    Filed: January 6, 2017
    Date of Patent: February 9, 2021
    Assignee: VANDERBILT UNIVERSITY
    Inventors: Arthur W. Mahoney, Patrick L. Anderson, Robert J. Webster, III
  • Publication number: 20200222079
    Abstract: The present invention relates to a system and apparatus for implementing a method for identifying tube parameters of a curved tube of an active cannula for operating on a target in a patient. The method includes the step (a) of acquiring a model of the patient anatomy including the target. The method also includes the step (b) of selecting a set of parameters characterizing a curved tube. The method also includes the step (c) of computing a workspace for an active cannula having the selected curved tube parameters. The method also includes the step (d) of comparing the workspace to the anatomical model to determine the degree to which an active cannula having the selected curved tube parameters covers the target. The method also includes the step (e) of repeating steps (b) through (d) through a defined number of curved tube parameter sets. The method also includes the step (f) of identifying the curved tube parameters that provide an active cannula with an optimal degree of target coverage.
    Type: Application
    Filed: January 9, 2020
    Publication date: July 16, 2020
    Inventors: Philip J. SWANEY, Ray LATHROP, Jessica BURGNER, Kyle WEAVER, Hunter B. GILBERT, Robert J. WEBSTER, III, David B. COMBER
  • Patent number: 10653491
    Abstract: A surgical manipulator includes an internal working end having an internal joint, and an external control interface linked to the internal working end for controlling the internal working end. The external control interface includes at least one lever defining a grip volume for a surgeon's hand when gripping and operating the at least one lever, and an external joint linked to the internal joint for controlling the internal joint. The external joint is positioned substantially within the grip volume.
    Type: Grant
    Filed: January 18, 2018
    Date of Patent: May 19, 2020
    Assignee: Vanderbilt University
    Inventors: Ray A. Lathrop, Robert J. Webster, III, James Netterville, Arundathi Prasad, Stanley Duke Herrell
  • Publication number: 20200069331
    Abstract: A steerable surgical needle (10) includes an elongated needle shaft (12), a beveled tip portion (14), and a flexural element (16) that connects the needle shaft (12) with the tip portion (14) and permits the tip portion to deflect relative to the needle shaft. A method for steering the surgical needle (10) through tissue includes the steps of advancing the needle in the body tissue to induce tip flexure which causes the needle to follow a curved trajectory, and rotating the needle about its longitudinal axis in place, without advancement, to remove the tip flexure.
    Type: Application
    Filed: October 30, 2019
    Publication date: March 5, 2020
    Inventors: Philip J. Swaney, Robert J. Webster
  • Patent number: 10548630
    Abstract: The present invention relates to a system and apparatus for implementing a method for identifying tube parameters of a curved tube of an active cannula for operating on a target in a patient. The method includes the step (a) of acquiring a model of the patient anatomy including the target. The method also includes the step (b) of selecting a set of parameters characterizing a curved tube. The method also includes the step (c) of computing a workspace for an active cannula having the selected curved tube parameters. The method also includes the step (d) of comparing the workspace to the anatomical model to determine the degree to which an active cannula having the selected curved tube parameters covers the target. The method also includes the step (e) of repeating steps (b) through (d) through a defined number of curved tube parameter sets. The method also includes the step (f) of identifying the curved tube parameters that provide an active cannula with an optimal degree of target coverage.
    Type: Grant
    Filed: February 11, 2014
    Date of Patent: February 4, 2020
    Assignee: VANDERBILT UNIVERSITY
    Inventors: Philip J. Swaney, Ray Lathrop, Jessica Burgner, Kyle Weaver, Hunter B. Gilbert, Robert J. Webster, David B. Comber
  • Patent number: 10548628
    Abstract: A steerable surgical needle (10) includes an elongated needle shaft (12), a beveled tip portion (14), and a flexural element (16) that connects the needle shaft (12) with the tip portion (14) and permits the tip portion to deflect relative to the needle shaft. A method for steering the surgical needle (10) through tissue includes the steps of advancing the needle in the body tissue to induce tip flexure which causes the needle to follow a curved trajectory, and rotating the needle about its longitudinal axis in place, without advancement, to remove the tip flexure.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: February 4, 2020
    Assignee: VANDERBILT UNIVERSITY
    Inventors: Philip J. Swaney, Robert J. Webster, III
  • Publication number: 20190314112
    Abstract: An apparatus for supporting a medical device on a patient includes a mounting structure configured to be fitted onto the patient to encircle at least a portion of a body part of the patient. The mounting structure includes an inner layer and an outer layer that define a confinement. A jamming material is contained within the confmement. The jamming material is configured to flow within the confmement to conform to the shape of the body part of the patient onto which the mounting structure is fitted. The mass of jamming material is configured to harden and become rigid in its conformed shape in response to a vacuum being formed in the confinement.
    Type: Application
    Filed: November 7, 2016
    Publication date: October 17, 2019
    Inventors: Patrick Wellborn, Robert J. Webster, III, Ray Lathrop, Richard J. Hendrick
  • Patent number: 10441371
    Abstract: A robotic surgical apparatus includes at least two tubes having a nested, concentric configuration with an inner tube positioned in an outer tube. The tubes are configured to deliver surgical therapy. A first tube carrier connected to the outer tube and a second tube carrier connected to the inner tube. The first tube carrier and its associated outer tube and the second tube carrier and its associated inner tube form a robotic arm assembly. An actuator for actuating the robotic arm assembly is configured to receive the robotic arm assembly via a tube insertion interface into which the robotic arm assembly can be inserted.
    Type: Grant
    Filed: October 3, 2016
    Date of Patent: October 15, 2019
    Assignee: VANDERBILT UNIVERSITY
    Inventors: Richard J. Hendrick, Robert J. Webster, III, S. Duke Herrell, Philip J. Swaney, Ray Lathrop
  • Publication number: 20190175288
    Abstract: An apparatus (20) for performing endoscopic surgery on a patient (12) includes at least two concentric tube manipulators (150) adapted to carry devices (152, 154) for performing a surgical operation. A transmission (200) operates the concentric tube manipulators (150). An endoscope tube (106) has a proximal end portion fixed to the transmission (200). The concentric tube manipulators (150) extend from the transmission (200) through an inner lumen (102) of the endoscope tube (106) and are operable to extend from a distal end (104) of the endoscope tube.
    Type: Application
    Filed: January 24, 2019
    Publication date: June 13, 2019
    Inventors: S. Duke Herrell, Robert J. Webster, Trevor Bruns, Philip J. Swaney, Richard Hendrick
  • Patent number: 10307214
    Abstract: A surgical robot system includes a support structure for positioning relative to a patient. The support structure includes a plurality of mounting structures. One or more robotic tool cassettes that are configured to interchangeably connect with any of the mounting structures. Each tool cassette includes a concentric tube manipulator and a transmission for operating the concentric tube manipulator. The support structure also includes a tube collector including a tube assembly associated with each of the mounting structures. The tube assemblies are configured to receive the concentric tube manipulators and guide the manipulators to extend along predetermined trajectories relative to each other.
    Type: Grant
    Filed: November 23, 2016
    Date of Patent: June 4, 2019
    Assignee: VANDERBILT UNIVERSITY
    Inventors: Ray Lathrop, Trevor L. Bruns, Arthur W. Mahoney, Hunter B. Gilbert, Philip J. Swaney, Richard J. Hendrick, Kyle Weaver, Paul T. Russell, Stanley Duke Herrell, Robert J. Webster
  • Publication number: 20190133705
    Abstract: A small diameter surgical tool implements an agonist-antagonist deflectable joint. The deflectable joint is an actuatable bendable structure that uses push-pull, agonist-antagonist action of a pair of nested tubes to actuate the joint. The tubes are designed to have non-central, offset neutral axes, and they are fixed together at locations distal to the deflectable joint, such as at their distal ends. Axial translations of the tubes relative to each other causes a push-pull, agonist-antagonist action between the tubes, which causes the deflectable joint to bend. In one implementation, a deflectable joint can be created in nested tubes by configuring radial portions of the tube sidewalls extending along the joint to have an axial region of reduced stiffness. As a result, axial agonist-antagonist motion between the tubes can cause bending of the deflectable joint.
    Type: Application
    Filed: November 6, 2017
    Publication date: May 9, 2019
    Inventors: Katherine E. Riojas, Robert J. Webster, Daniel Caleb Rucker, Kaitlin Oliver Butler, Ryan Ponten
  • Patent number: 10238457
    Abstract: An apparatus (20) for performing endoscopic surgery on a patient (12) includes at least two concentric tube manipulators (150) adapted to carry devices (152, 154) for performing a surgical operation. A transmission (200) operates the concentric tube manipulators (150). An endoscope tube (106) has a proximal end portion fixed to the transmission (200). The concentric tube manipulators (150) extend from the transmission (200) through an inner lumen (102) of the endoscope tube (106) and are operable to extend from a distal end (104) of the endoscope tube.
    Type: Grant
    Filed: April 18, 2014
    Date of Patent: March 26, 2019
    Assignee: VANDERBILT UNIVERSITY
    Inventors: S. Duke Herrell, Robert J. Webster, III, Trevor Bruns, Philip J. Swaney, Richard Hendrick
  • Publication number: 20190083749
    Abstract: The needle-sized surgical tools used in arthroscopy, otolaryngology, and other surgical fields could become even more valuable to surgeons if endowed with the ability to navigate around sharp corners to manipulate or visualize tissue. A needle-sized bendable joint design that grants this ability. It can be easily interfaced with manual tools or concentric tube robots and is straightforward and inexpensive to manufacture. The bendable joint includes of a nitinol tube with several asymmetric cutouts, actuated by a tendon.
    Type: Application
    Filed: October 31, 2018
    Publication date: March 21, 2019
    Inventors: Philip J. Swaney, Peter York, Hunter B. Gilbert, Robert J. Webster, III, Arthur W. Mahoney, Patrick Wellborn
  • Publication number: 20190015166
    Abstract: A snare tool manipulator system includes an elongated flexible device having a length and including a distally mounted end effector configured to perform a task. The flexible device is operable to manipulate the end effector in order to perform the task. The system also includes an elongated snare tool including a distally mounted snare device configured for grasping the flexible elongated member at a position along its length. The snare tool is operable robotically to manipulate the flexible device which in response manipulates the end effector.
    Type: Application
    Filed: January 6, 2017
    Publication date: January 17, 2019
    Inventors: Arthur W. MAHONEY, Patrick L. ANDERSON, Robert J. WEBSTER, III