Patents by Inventor Robert Jan Visser
Robert Jan Visser has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12137601Abstract: An organic light-emitting diode (OLED) deposition system includes two deposition chambers, a transfer chamber between the two deposition chambers, a metrology system having one or more sensors to perform measurements of the workpiece within the transfer chamber, and a control system to cause the system to form an organic light-emitting diode layer stack on the workpiece. Vacuum is maintained around the workpiece while the workpiece is transferred between the two deposition chambers and while retaining the workpiece within the transfer chamber. The control system is configured to cause the two deposition chambers to deposit two layers of organic material onto the workpiece, and to receive a first plurality of measurements of the workpiece in the transfer chamber from the metrology system.Type: GrantFiled: June 8, 2023Date of Patent: November 5, 2024Assignee: Applied Materials, Inc.Inventors: Yeishin Tung, Byung Sung Kwak, Robert Jan Visser, Gangadhar Banappanavar, Dinesh Kabra
-
Publication number: 20240287678Abstract: Methods of depositing a metal film by exposing a substrate surface to a halide precursor and an organosilane reactant are described. The halide precursor comprises a compound of general formula (I): MQzRm, wherein M is a metal, Q is a halogen selected from Cl, Br, F or I, z is from 1 to 6, R is selected from alkyl, CO, and cyclopentadienyl, and m is from 0 to 6. The aluminum reactant comprises a compound of general formula (II) or general formula (III): wherein R1, R2, R3, R4, R5, R6, R7, R8, Ra, Rb, Rc, Rd, Re, and Rf are independently selected from hydrogen (H), substituted alkyl or unsubstituted alkyl; and X, Y, X?, and Y? are independently selected from nitrogen (N) and carbon (C).Type: ApplicationFiled: April 22, 2024Publication date: August 29, 2024Applicant: Applied Materials, Inc.Inventors: Geetika Bajaj, Darshan Thakare, Prerna Goradia, Robert Jan Visser, Yixiong Yang, Jacqueline S. Wrench, Srinivas Gandikota
-
Publication number: 20240284703Abstract: Exemplary subpixel structures include a directional light-emitting diode structure characterized by a full-width-half-maximum (FWHM) of emitted light having a divergence angle of less than or about 10°. The subpixel structure further includes a lens positioned a first distance from the light-emitting diode structure, where the lens is shaped to focus the emitted light from the light-emitting diode structure. The subpixel structure still further includes a patterned light absorption barrier positioned a second distance from the lens. The patterned light absorption barrier defines an opening in the barrier, and the focal point of the light focused by the lens is positioned within the opening. The subpixels structures may be incorporated into a pixel structure, and pixel structures may be incorporated into a display that is free of a polarizer layer.Type: ApplicationFiled: April 22, 2024Publication date: August 22, 2024Applicant: Applied Materials, Inc.Inventors: Chung-Chih Wu, Po-Jui Chen, Hoang Yan Lin, Guo-Dong Su, Wei-Kai Lee, Chi-Jui Chang, Wan-Yu Lin, Byung Sung Kwak, Robert Jan Visser
-
Patent number: 12021102Abstract: An imaging system and a method of creating composite images are provided. The imaging system includes one or more lens assemblies coupled to a sensor. When reflected light from an object enters the imaging system, incident light on the metalens filter systems creates filtered light, which is turned into composite images by the corresponding sensors. Each metalens filter system focuses the light into a specific wavelength, creating the metalens images. The metalens images are sent to the processor, wherein the processor combines the metalens images into one or more composite images. The metalens images are combined into a composite image, and the composite image has reduced chromatic aberrations.Type: GrantFiled: March 17, 2023Date of Patent: June 25, 2024Assignee: Applied Materials, Inc.Inventors: Jinxin Fu, Yongan Xu, Ludovic Godet, Naamah Argaman, Robert Jan Visser
-
Publication number: 20240184024Abstract: Embodiments herein describe a sub-micron 3D diffractive optics element and a method for forming the sub-micron 3D diffractive optics element. In a first embodiment, a method is provided for forming a sub-micron 3D diffractive optics element on a film stack disposed on a substrate without planarization. The method includes forming a hardmask on a top surface of a film stack. Forming a mask material on a portion of the top surface and a portion of the hardmask. Etching the top surface. Trimming the mask. Etching the top surface again. Trimming the mask a second time. Etching the top surface yet again and then stripping the mask material.Type: ApplicationFiled: February 12, 2024Publication date: June 6, 2024Inventors: Michael Yu-tak YOUNG, Ludovic GODET, Robert Jan VISSER, Naamah ARGAMAN, Christopher Dennis BENCHER, Wayne MCMILLAN
-
Patent number: 11974457Abstract: An organic light-emitting diode (OLED) device includes a substrate, a well structure on the substrate with the well structure having a recess with side walls and a floor, a lower metal layer covering the floor and side-walls of the well, an upper conductive layer on the lower metal layer covering the floor of the well and contacting the lower metal layer, the upper conductive layer having outer edges at about an intersection of the side walls and the floor, a dielectric layer formed of an oxide of the lower metal layer covering the side walls of the well without covering the upper conductive layer, a stack of OLED layers covering at least the floor of the well, the upper conductive layer providing an electrode for the stack of OLED layers, and a light extraction layer (LEL) in the well over the stack of OLED layers and the dielectric layer.Type: GrantFiled: April 7, 2023Date of Patent: April 30, 2024Assignee: Applied Materials, Inc.Inventors: Gang Yu, Chung-Chia Chen, Wan-Yu Lin, Hyunsung Bang, Lisong Xu, Byung Sung Kwak, Robert Jan Visser
-
Patent number: 11968856Abstract: Exemplary subpixel structures include a directional light-emitting diode structure characterized by a full-width-half-maximum (FWHM) of emitted light having a divergence angle of less than or about 10°. The subpixel structure further includes a lens positioned a first distance from the light-emitting diode structure, where the lens is shaped to focus the emitted light from the light-emitting diode structure. The subpixel structure still further includes a patterned light absorption barrier positioned a second distance from the lens. The patterned light absorption barrier defines an opening in the barrier, and the focal point of the light focused by the lens is positioned within the opening. The subpixels structures may be incorporated into a pixel structure, and pixel structures may be incorporated into a display that is free of a polarizer layer.Type: GrantFiled: October 4, 2021Date of Patent: April 23, 2024Assignee: Applied Materials, Inc.Inventors: Chung-Chih Wu, Po-Jui Chen, Hoang Yan Lin, Guo-Dong Su, Wei-Kai Lee, Chi-Jui Chang, Wan-Yu Lin, Byung Sung Kwak, Robert Jan Visser
-
Publication number: 20240130210Abstract: An organic light-emitting diode (OLED) deposition system includes two deposition chambers, a transfer chamber between the two deposition chambers, a metrology system having one or more sensors to perform measurements of the workpiece within the transfer chamber, and a control system to cause the system to form an organic light-emitting diode layer stack on the workpiece. Vacuum is maintained around the workpiece while the workpiece is transferred between the two deposition chambers and while retaining the workpiece within the transfer chamber. The control system is configured to cause the two deposition chambers to deposit two layers of organic material onto the workpiece, and to receive a first plurality of measurements of the workpiece in the transfer chamber from the metrology system.Type: ApplicationFiled: December 22, 2023Publication date: April 18, 2024Inventors: Yeishin Tung, Byung Sung Kwak, Robert Jan Visser, Guoheng Zhao, Todd J. Egan, Dinesh Kabra, Gangadhar Banappanavar
-
Patent number: 11963377Abstract: A light-emitting diode display including a substrate having a driving circuitry and a plurality of light emitting diode structures disposed on the substrate. Each light-emitting diode structure has a light emitting diode with a light emission zone having a planar portion, and a pigmentless light extraction layer of a UV-cured ink disposed over the light-emitting diode. The light extraction layer has a gradient in index of refraction along an axis normal to the planar portion, and the index of refraction of the light extraction layer decreases with distance from the planar portion.Type: GrantFiled: March 31, 2022Date of Patent: April 16, 2024Assignee: Applied Materials, Inc.Inventors: Gang Yu, Chung-Chia Chen, Wan-Yu Lin, Hyunsung Bang, Lisong Xu, Byung Sung Kwak, Robert Jan Visser
-
Patent number: 11956994Abstract: The present disclosure is generally related to 3D imaging capable OLED displays. A light field display comprises an array of 3D light field pixels, each of which comprises an array of corrugated OLED pixels, a metasurface layer disposed adjacent to the array of 3D light field pixels, and a plurality of median layers disposed between the metasurface layer and the corrugated OLED pixels. Each of the corrugated OLED pixels comprises primary or non-primary color subpixels, and produces a different view of an image through the median layers to the metasurface to form a 3D image. The corrugated OLED pixels combined with a cavity effect reduce a divergence of emitted light to enable effective beam direction manipulation by the metasurface. The metasurface having a higher refractive index and a smaller filling factor enables the deflection and direction of the emitted light from the corrugated OLED pixels to be well controlled.Type: GrantFiled: August 10, 2021Date of Patent: April 9, 2024Assignee: Applied Materials, Inc.Inventors: Chung-Chih Wu, Hoang Yan Lin, Guo-Dong Su, Zih-Rou Cyue, Li-Yu Yu, Wei-Kai Lee, Guan-Yu Chen, Chung-Chia Chen, Wan-Yu Lin, Gang Yu, Byung-Sung Kwak, Robert Jan Visser, Chi-Jui Chang
-
Patent number: 11927535Abstract: An apparatus for determining a characteristic of a photoluminescent (PL) layer comprises: a light source that generates an excitation light that includes light from the visible or near-visible spectrum; an optical assembly configured to direct the excitation light onto a PL layer; a detector that is configured to receive a PL emission generated by the PL layer in response to the excitation light interacting with the PL layer and generate a signal based on the PL emission; and a computing device coupled to the detector and configured to receive the signal from the detector and determine a characteristic of the PL layer based on the signal.Type: GrantFiled: March 31, 2023Date of Patent: March 12, 2024Assignee: Applied Materials, Inc.Inventors: Avishek Ghosh, Byung-Sung Kwak, Todd Egan, Robert Jan Visser, Gangadhar Banappanavar, Dinesh Kabra
-
Patent number: 11925073Abstract: A display device includes a display layer having a plurality of light-emitting diodes and an encapsulation layer covering a light-emitting side of the display layer. The encapsulation layer includes a plurality of first polymer projections on display layer, the plurality of first polymer projections having spaces therebetween, and a first dielectric layer conformally covering the plurality of first polymer projections and any exposed underlying surface in the spaces between the first polymer projections, the dielectric layer forming side walls along sides of the first polymer projections and defining wells in spaces between the side walls.Type: GrantFiled: October 5, 2021Date of Patent: March 5, 2024Assignee: Applied Materials, Inc.Inventors: Kyuil Cho, Byung Sung Kwak, Robert Jan Visser
-
Patent number: 11889740Abstract: An organic light-emitting diode (OLED) deposition system includes two deposition chambers, a transfer chamber between the two deposition chambers, a metrology system having one or more sensors to perform measurements of the workpiece within the transfer chamber, and a control system to cause the system to form an organic light-emitting diode layer stack on the workpiece. Vacuum is maintained around the workpiece while the workpiece is transferred between the two deposition chambers and while retaining the workpiece within the transfer chamber. The control system is configured to cause the two deposition chambers to deposit two layers of organic material onto the workpiece, and to receive a first plurality of measurements of the workpiece in the transfer chamber from the metrology system.Type: GrantFiled: January 19, 2021Date of Patent: January 30, 2024Assignee: Applied Materials, Inc.Inventors: Yeishin Tung, Byung Sung Kwak, Robert Jan Visser, Gangadhar Banappanavar, Dinesh Kabra
-
Patent number: 11856833Abstract: An organic light-emitting diode (OLED) deposition system includes two deposition chambers, a transfer chamber between the two deposition chambers, a metrology system having one or more sensors to perform measurements of the workpiece within the transfer chamber, and a control system to cause the system to form an organic light-emitting diode layer stack on the workpiece. Vacuum is maintained around the workpiece while the workpiece is transferred between the two deposition chambers and while retaining the workpiece within the transfer chamber. The control system is configured to cause the two deposition chambers to deposit two layers of organic material onto the workpiece, and to receive a first plurality of measurements of the workpiece in the transfer chamber from the metrology system.Type: GrantFiled: January 19, 2021Date of Patent: December 26, 2023Assignee: Applied Materials, Inc.Inventors: Yeishin Tung, Byung Sung Kwak, Robert Jan Visser, Guoheng Zhao, Todd J. Egan, Dinesh Kabra, Gangadhar Banappanavar
-
Patent number: 11846836Abstract: An electro-optical waveguide modulator device includes a seed layer on a substrate, the seed layer having a first crystallographic plane aligned with a surface of the seed layer, an electro-optical channel extending in a first direction on the seed layer and having a second crystallographic plane aligned with the surface of the seed layer, an insulator layer on both sides of the electro-optical channel on the substrate in a second direction perpendicular to the first direction, an electrode barrier layer on the electro-optical channel and the insulator layer, and one or more of electrodes extending in the second direction. The seed layer and the insulator layer each comprise material having a refractive index that is lower than the electro-optical channel.Type: GrantFiled: May 3, 2021Date of Patent: December 19, 2023Assignee: Applied Materials, Inc.Inventors: Russell Chin Yee Teo, Ludovic Godet, Nir Yahav, Robert Jan Visser
-
Patent number: 11848232Abstract: Embodiments of the present disclosure relate to processes for filling trenches. The process includes depositing a first amorphous silicon layer on a surface of a layer and a second amorphous silicon layer in a portion of a trench formed in the layer, and portions of side walls of the trench are exposed. The first amorphous silicon layer is removed. The process further includes depositing a third amorphous silicon layer on the surface of the layer and a fourth amorphous silicon layer on the second amorphous silicon layer. The third amorphous silicon layer is removed. The deposition/removal cyclic processes may be repeated until the trench is filled with amorphous silicon layers. The amorphous silicon layers form a seamless amorphous silicon gap fill in the trench since the amorphous silicon layers are formed from bottom up.Type: GrantFiled: June 13, 2022Date of Patent: December 19, 2023Assignee: Applied Materials, Inc.Inventors: Xin Liu, Fei Wang, Rui Cheng, Abhijit Basu Mallick, Robert Jan Visser
-
Patent number: 11788883Abstract: A superconducting nanowire single photon detector (SNSPD) device includes a substrate, a distributed Bragg reflector on the substrate, a seed layer of a metal nitride on the distributed Bragg reflector, and a superconductive wire on the seed layer. The distributed Bragg reflector includes a plurality of bi-layers, each bi-layer including lower layer of a first material and an upper layer of a second material having a higher index of refraction than the first material. The wire is a metal nitride different from the metal nitride of the seed material.Type: GrantFiled: January 29, 2021Date of Patent: October 17, 2023Assignee: Applied Materials, Inc.Inventors: Zihao Yang, Mingwei Zhu, Nag B. Patibandla, Nir Yahav, Robert Jan Visser, Adi de la Zerda
-
Publication number: 20230320139Abstract: Embodiments of the present disclosure generally relate to electroluminescent devices, such as organic light-emitting diodes, and displays including electroluminescent devices. In an embodiment is provided an electroluminescent device that includes a pixel defining layer, an organic emitting unit disposed over at least a portion of the pixel defining layer, and a filler layer disposed over at least a portion of the organic emitting unit, wherein a refractive index of the pixel defining layer is lower than a refractive index of the filler layer, and wherein the refractive index of the pixel defining layer is lower than a refractive index of one or more layers of the organic emitting unit. In another embodiment is provided a display device that includes a substrate, a thin film transistor formed on the substrate, an interconnection electrically coupled to the thin film transistor, and an electroluminescent device electrically coupled to the interconnection.Type: ApplicationFiled: September 21, 2020Publication date: October 5, 2023Inventors: Chung-chia CHEN, Wan-Yu LIN, Hyunsung BANG, Lisong XU, Gang YU, Byung-Sung KWAK, Robert Jan VISSER, Chung-Chih WU, Hoang Yan LIN, Guo-Dong SU, Wei-Kai LEE, Yi-Jiun CHEN, Ting-Sheng HSU, Po-Hsiang LIAO, Wei-Cheng LIN
-
Publication number: 20230320183Abstract: An organic light-emitting diode (OLED) deposition system includes two deposition chambers, a transfer chamber between the two deposition chambers, a metrology system having one or more sensors to perform measurements of the workpiece within the transfer chamber, and a control system to cause the system to form an organic light-emitting diode layer stack on the workpiece. Vacuum is maintained around the workpiece while the workpiece is transferred between the two deposition chambers and while retaining the workpiece within the transfer chamber. The control system is configured to cause the two deposition chambers to deposit two layers of organic material onto the workpiece, and to receive a first plurality of measurements of the workpiece in the transfer chamber from the metrology system.Type: ApplicationFiled: June 8, 2023Publication date: October 5, 2023Inventors: Yeishin Tung, Byung Sung Kwak, Robert Jan Visser, Gangadhar Banappanavar, Dinesh Kabra
-
Publication number: 20230309420Abstract: A superconducting nanowire single photon detector (SNSPD) device includes a substrate having a top surface, an optical waveguide on the top surface of the substrate to receive light propagating substantially parallel to the top surface of the substrate, a seed layer of metal nitride on the optical waveguide, and a superconductive wire on the seed layer. The superconductive wire is a metal nitride different from the metal nitride of the seed layer and is optically coupled to the optical waveguide.Type: ApplicationFiled: May 10, 2023Publication date: September 28, 2023Inventors: Zihao Yang, Mingwei Zhu, Nag B. Patibandla, Nir Yahav, Robert Jan Visser, Adi de la Zerda