Patents by Inventor Robert Jay Lederman

Robert Jay Lederman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11039811
    Abstract: An intracardiac imaging system has an MRI compatible intracardiac echography catheter having transmitters, receivers, a multiplexer, and a beamformer. The catheter can include an atraumatic tip disposed on the distal end of the catheter, a pair of inductively coupled coils proximal the atraumatic tip, at least one CMUT-on-CMOS volumetric imaging chip disposed between the pair of coils, and a cable lumen disposed within the volume sized to house a small number of electrical connections due to significant multiplexing in the CMUT-on-CMOS chip. The catheter can be made of MRI compatible materials and can include active cooling channels.
    Type: Grant
    Filed: November 2, 2018
    Date of Patent: June 22, 2021
    Assignees: Georgia Tech Research Corporation, The United States of America, as Represented by The Secretary, Department of Health and Human Services
    Inventors: Fahrettin Levent Degertekin, Coskun Tekes, Robert Jay Lederman, Ozgur Kocaturk, M. Wasequr Rashid, Maysam Ghovanloo
  • Patent number: 10537718
    Abstract: Technology disclosed herein provides a reduced transition between the edge of a rigid vascular dilator and the distal edge of the accompanying introducer sheath. Disclosed dilators can be segmented into two or more primarily longitudinally extending parts, can have rigid circumferential or semi-circumferential leading shoulders to minimize the transition between the dilator and the sheath edge, and can contain internal recesses to allow sequential retraction of segments once the introducer sheath is delivered to a target chamber. With this technology, vascular introducer sheaths can be introduced percutaneously into a broad range of diseased target vessels and chambers with reduced damage to the wall of the vessel or chamber, and with reduced damage to the distal end of the introducer sheath.
    Type: Grant
    Filed: October 13, 2014
    Date of Patent: January 21, 2020
    Assignees: THE UNITED STATES OF AMERICA, as represented by the Secretary, Department of Health and Human Services, Henry Ford Health System
    Inventors: Robert Jay Lederman, Ozgur Kocaturk, Adam Brett Greenbaum
  • Publication number: 20190090841
    Abstract: An intracardiac imaging system has an MRI compatible intracardiac echography catheter having transmitters, receivers, a multiplexer, and a beamformer. The catheter can include an atraumatic tip disposed on the distal end of the catheter, a pair of inductively coupled coils proximal the atraumatic tip, at least one CMUT-on-CMOS volumetric imaging chip disposed between the pair of coils, and a cable lumen disposed within the volume sized to house a small number of electrical connections due to significant multiplexing in the CMUT-on-CMOS chip. The catheter can be made of MRI compatible materials and can include active cooling channels.
    Type: Application
    Filed: November 2, 2018
    Publication date: March 28, 2019
    Inventors: Fahrettin Levent Degertekin, Coskun Tekes, Robert Jay Lederman, Ozgur Kocaturk, M. Wasequr Rashid, Maysam Ghovanloo
  • Patent number: 10123768
    Abstract: An intracardiac imaging system has an intracardiac echography catheter with an internal volume, a proximal end and a distal end. The catheter includes an atraumatic tip disposed on the distal end of the catheter, a pair of inductively coupled coils proximal the atraumatic tip, at least one CMUT on CMOS volumetric imaging chip disposed between the pair of coils, and a cable lumen disposed within the volume and configured to small number of electrical connections due to significant multiplexing in the CMUT on CMOS chip. The catheter can be made of MRI compatible materials and can include active cooling channels. The CMUT on CMOS chip has a plurality of Tx elements transmitting imaging pulses, a plurality of Rx elements, disposed on the chip to have a large aperture and a plurality of electronics interfacing with the Tx elements for beamforming and the Rx elements to produce radio frequency output signals.
    Type: Grant
    Filed: September 25, 2014
    Date of Patent: November 13, 2018
    Assignee: Georgia Tech Research Corporation
    Inventors: Fahrettin Levent Degertekin, Coskun Tekes, Robert Jay Lederman, Ozgur Kocaturk, M. Wasequr Rashid, Maysam Ghovanloo
  • Publication number: 20160249882
    Abstract: An intracardiac imaging system has an intracardiac echography catheter with an internal volume, a proximal end and a distal end. The catheter includes an atraumatic tip disposed on the distal end of the catheter, a pair of inductively coupled coils proximal the atraumatic tip, at least one CMUT on CMOS volumetric imaging chip disposed between the pair of coils, and a cable lumen disposed within the volume and configured to small number of electrical connections due to significant multiplexing in the CMUT on CMOS chip. The catheter can be made of MRI compatible materials and can include active cooling channels. The CMUT on CMOS chip has a plurality of Tx elements transmitting imaging pulses, a plurality of Rx elements, disposed on the chip to have a large aperture and a plurality of electronics interfacing with the Tx elements for beamforming and the Rx elements to produce radio frequency output signals.
    Type: Application
    Filed: September 25, 2014
    Publication date: September 1, 2016
    Inventors: Fahrettin Levent Degertekin, Coskun Tekes, Robert Jay Lederman, Ozgur Kocaturk, M. Wasequr Rashid, Maysam Ghovanloo
  • Publication number: 20160235952
    Abstract: Technology disclosed herein provides a reduced transition between the edge of a rigid vascular dilator and the distal edge of the accompanying introducer sheath. Disclosed dilators can be segmented into two or more primarily longitudinally extending parts, can have rigid circumferential or semi-circumferential leading shoulders to minimize the transition between the dilator and the sheath edge, and can contain internal recesses to allow sequential retraction of segments once the introducer sheath is delivered to a target chamber. With this technology, vascular introducer sheaths can be introduced percutaneously into a broad range of diseased target vessels and chambers with reduced damage to the wall of the vessel or chamber, and with reduced damage to the distal end of the introducer sheath.
    Type: Application
    Filed: October 13, 2014
    Publication date: August 18, 2016
    Applicants: NIH/OTT, Henry Ford Health System
    Inventors: Robert Jay Lederman, Ozgur Kocaturk, Adam Brett Greenbaum